We present a study on the spatiotemporal pattern underlying the climate dynamics in various locations spread over India, including the Himalayan region, coastal region, and central and northeastern parts of India. We try to capture the variations in the complexity of their dynamics derived from temperature and relative humidity data from 1948 to 2022. By estimating the recurrence-based measures from the reconstructed phase space dynamics using a sliding window analysis on the data sets, we study the climate variability in different spatial locations. The study brings out the variations in the complexity of the underlying dynamics as well as their heterogeneity across the locations in India. We find almost all locations indicate shifts to more irregular and stochastic dynamics for temperature data around 1972–79 and shifts back to more regular dynamics beyond 2000. These patterns correlate with reported shifts in the climate and Indian Summer Monsoon related to strong and moderate El Niño–Southern Oscillation events and confirm their associated regional variability.

1.
M.
Ghil
and
V.
Lucarini
, “
The physics of climate variability and climate change
,”
Rev. Mod. Phys.
92
,
035002
(
2020
).
2.
S. K.
Dash
and
A.
Mamgain
, “
Changes in the frequency of different categories of temperature
,”
J. Appl. Meteorol. Climatol.
50
,
1842
(
2011
).
3.
C.
Wasko
, “
Review: Can temperature be used to inform changes to flood extremes with global warming?
,”
Philos. Trans. R. Soc. A
379
,
20190551
(
2021
).
4.
M.
Ghil
,
M. R.
Allen
,
M. D.
Dettinger
,
K.
Ide
,
D.
Kondrashov
,
M. E.
Mann
,
A. W.
Robertson
,
A.
Saunders
,
Y.
Tian
,
F.
Varadi
, and
P.
Yiou
, “
Advanced spectral methods for climatic time series
,”
Rev. Geophys.
40
,
3-1
3-41
, https://doi.org/10.1029/2000RG000092 (
2002
).
5.
B.
Goswami
,
N.
Marwan
,
G.
Feulner
, and
J.
Kurths
, “
How do global temperature drivers influence each other?
,”
Eur. Phys. J. Spec. Top.
222
,
861
873
(
2013
).
6.
Y.
Ashkenazy
,
D. R.
Baker
,
H.
Gildor
, and
S.
Havlin
, “
Nonlinearity and multifractality of climate change in the past 420,000 years
,”
Geophys. Res. Lett.
30
,
2146
, https://doi.org/10.1029/2003GL018099 (
2003
).
7.
I.
Fountalis
,
A.
Bracco
, and
C.
Dovrolis
, “
Spatio-temporal network analysis for studying climate patterns
,”
Clim. Dyn.
42
,
879
899
(
2014
).
8.
E.
Bradley
and
H.
Kantz
, “
Nonlinear time-series analysis revisited
,”
Chaos
25
,
097610
(
2015
).
9.
G.
Ambika
and
K. P.
Harikrishnan
, “Methods of nonlinear time series analysis and applications: A review,” in Dynamics and Control of Energy Systems (Springer, 2020), pp. 9–27.
10.
N.
Marwan
,
M.
Romano
,
M.
Thiel
, and
J.
Kurths
, “
Recurrence plots for the analysis of complex systems
,”
Phys. Rep.
438
,
237
329
(
2007
).
11.
R.
Jacob
,
K. P.
Harikrishnan
,
R.
Misra
, and
G.
Ambika
, “
Uniform framework for the recurrence-network analysis of chaotic time series
,”
Phys. Rev. E
93
,
012202
(
2016
).
12.
N.
Marwan
,
S.
Schinkel
, and
J.
Kurths
, “
Recurrence plots 25 years later—Gaining confidence in dynamical transitions
,”
Europhys. Lett.
101
,
20007
(
2013
).
13.
B.
Goswami
, “
A brief introduction to nonlinear time series analysis and recurrence plots
,”
Vibration
2
,
332
368
(
2019
).
14.
J.
Lekscha
and
R. V.
Donner
, “
Detecting dynamical anomalies in time series from different palaeoclimate proxy archives using windowed recurrence network analysis
,”
Nonlinear Processes Geophys.
27
,
261
275
(
2020
).
15.
J. F.
Donges
,
R. V.
Donner
,
K.
Rehfeld
,
N.
Marwan
,
M.
Trauth
, and
J.
Kurths
, “
Identification of dynamical transitions in marine palaeoclimate records by recurrence network analysis
,”
Nonlinear Processes Geophys.
18
,
545
562
(
2011
).
16.
S. V.
George
,
R.
Misra
, and
G.
Ambika
, “
Classification of close binary stars using recurrence networks
,”
Chaos
29
,
113112
(
2019
).
17.
V.
Godavarthi
,
V.
Unni
,
E.
Gopalakrishnan
, and
R.
Sujith
, “
Recurrence networks to study dynamical transitions in a turbulent combustor
,”
Chaos
27
,
063113
(
2017
).
18.
A.
Bhattacharya
,
S.
De
,
S.
Mondal
,
A.
Mukhopadhyay
, and
S.
Sen
, “
Early detection of lean blowout using recurrence network for varying degrees of premixedness
,”
Chaos
32
,
063105
(
2022
).
19.
S.
Martín-González
,
J.
Navarro-Mesa
,
G.
Juliá-Serdá
,
G.
Ramírez-Ávila
, and
A.
Ravelo-García
, “
Improving the understanding of sleep apnea characterization using recurrence quantification analysis by defining overall acceptable values for the dimensionality of the system, the delay, and the distance threshold
,”
PLoS One
13
,
e0194462
(
2018
).
20.
M.
Krishnadas
,
K. P.
Harikrishnan
, and
G.
Ambika
, “
Recurrence measures and transitions in stock market dynamics
,”
Phys. A
608
,
128240
(
2022
).
21.
S. V.
George
,
S.
Kachhara
,
R.
Misra
, and
G.
Ambika
, “
Early warning signals indicate a critical transition in Betelgeuse
,”
Astron. Astrophys.
640
,
L21
(
2020
).
22.
S.
Kachhara
and
G.
Ambika
, “
Bimodality and scaling in recurrence networks from ECG data
,”
Europhys. Lett.
127
,
60004
(
2019
).
23.
S.
Adarsh
,
V.
Nourani
,
D.
Archana
, and
D. S.
Dharan
, “
Multifractal description of daily rainfall fields over India
,”
J. Hydrol.
586
,
124913
(
2020
).
24.
R.
Ray
,
S.
Dey
,
M. H.
Khondekar
, and
K.
Ghosh
, “
Multifractality and singularity in average temperature and dew point across India
,”
Int. J. Adv. Technol. Eng. Explor.
5
,
2394
5443
(
2018
).
25.
L.
Hingane
,
K.
Kumar
, and
B.
Murty
, “
Long term trends of surface air temperature in India
,”
J. Clim.
5
,
521
528
(
1985
).
26.
R. K.
Paul
,
P.
Birthal
, and
A.
Khokhar
, “
Structural breaks in mean temperature over agroclimatic zones in India
,”
Sci. World J.
2014
,
434325
(
2014
).
27.
G.
Rao
,
M.
Murty
, and
U.
Joshi
, “
Climate change over India as revealed by critical extreme temperature analysis
,”
Mausam
56
,
601
608
(
2005
).
28.
H.
Beck
,
N.
Zimmermann
,
T.
McVicar
,
N.
Vergopolan
,
A.
Berg
, and
E. F.
Wood
, “
Present and future Köppen-Geiger climate classification maps at 1-km resolution
,”
Sci. Data
5
,
180214
(
2018
).
29.
K. H.
Kraemer
,
R.
Donner
,
J.
Heitzig
, and
N.
Marwan
, “
Recurrence threshold selection for obtaining robust recurrence characteristics in different embedding dimensions
,”
Chaos
28
,
085720
(
2018
).
30.
S.
Song
,
S.
Yeh
, and
J.
Park
, “
Dissimilar characteristics associated with the 1976/1977 and 1998/1999 climate regime shifts in the North Pacific
,”
Theor. Appl. Clim.
142
,
1463
1470
(
2020
).
31.
C.-C.
Hong
,
Y.-K.
Wu
,
T.
Li
, and
C.-C.
Chang
, “
The climate regime shift over the Pacific during 1996/1997
,”
Clim. Dyn.
43
,
435
446
(
2014
).
32.
T.
Nitta
and
S.
Yamada
, “
Recent warming of tropical sea surface temperature and its relationship to the Northern Hemisphere circulation
,”
J. Meteorol. Soc. Jpn.
67
,
375
383
(
1989
).
33.
C.-C.
Hong
,
Y.-K.
Wu
,
T.
Li
, and
C.-C.
Chang
, “
The climate regime shift over the Pacific during 1996/1997
,”
Clim. Dyn.
43
,
435
446
(
2014
).
34.
H.-S.
Jo
,
S.-W.
Yeh
, and
S.-K.
Lee
, “
Changes in the relationship in the SST variability between the tropical Pacific and the North Pacific across the 1998/1999 regime shift
,”
Geophys. Res. Lett.
42
,
7171
7178
, https://doi.org/10.1002/2015GL065049 (
2015
).
35.
A.
Miller
,
D.
Cayan
,
T.
Barnett
,
N.
Graham
, and
J.
Oberhuber
, “
The 1976-77 climate shift of the Pacific Ocean
,”
Oceanography
7
,
21
26
(
1994
).
36.
D.
Müllner
, “Modern hierarchical, agglomerative clustering algorithms,” arXiv:1109.2378 (2011).
37.
Z.
Bar-Joseph
,
D. K.
Gifford
, and
T. S.
Jaakkola
, “
Fast optimal leaf ordering for hierarchical clustering
,”
Bioinformatics
17
,
S22
S29
(
2001
).
38.
P. J.
Rousseeuw
, “
Silhouettes: A graphical aid to the interpretation and validation of cluster analysis
,”
J. Comput. Appl. Math.
20
,
53
65
(
1987
).
39.
T.
Braun
,
V. R.
Unni
,
R.
Sujith
,
J.
Kurths
, and
N.
Marwan
, “
Detection of dynamical regime transitions with lacunarity as a multiscale recurrence quantification measure
,”
Nonlinear Dyn.
104
,
3955
3973
(
2021
).
40.
M. K.
Roxy
,
K.
Ritika
,
P.
Terray
,
R.
Murtugudde
,
K.
Ashok
, and
B.
Goswami
, “
Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea thermal gradient
,”
Nat. Commun.
6
,
7423
(
2015
).
41.
A.
Sahana
,
S.
Ghosh
,
A.
Ganguly
, and
R.
Murtugudde
, “
Shift in Indian summer monsoon onset during 1976/1977
,”
Environ. Res. Lett.
10
,
054006
(
2015
).
42.
S.
Menon
,
J.
Hansen
,
L.
Nazarenko
, and
Y.
Luo
, “
Climate effects of black carbon aerosols in China and India
,”
Science
297
,
2250
2253
(
2002
).
43.
A. K.
Prasad
,
R. P.
Singh
, and
A.
Singh
, “
Variability of aerosol optical depth over Indian subcontinent using MODIS data
,”
J. Indian Soc. Remote Sens.
32
,
313
316
(
2004
).
44.
Y.
Zhu
and
D. D.
Houghton
, “
The impact of Indian Ocean SST on the large-scale Asian summer monsoon and the hydrological cycle
,”
Int. J. Climatol.
16
,
617
632
(
1996
).
45.
I.
Roy
,
R. G.
Tedeschi
, and
M.
Collins
, “
ENSO teleconnections to the Indian summer monsoon under changing climate
,”
Int. J. Climatol.
39
,
3031
3042
(
2019
).
46.
K.
Saikranthi
,
B.
Radhakrishna
,
S. K.
Satheesh
, and
T.
Narayana Rao
, “
Spatial variation of different rain systems during El Niño and La Niña periods over India and adjoining ocean
,”
Clim. Dyn.
50
,
3671
3685
(
2018
).
47.
K.
Athira
,
M. K.
Roxy
,
P.
Dasgupta
,
J.
Saranya
,
V. K.
Singh
, and
R.
Attada
, “
Regional and temporal variability of Indian summer monsoon rainfall in relation to El Niño southern oscillation
,”
Sci. Rep.
13
,
12643
(
2023
).
48.
B.
Xiang
and
B.
Wang
, “
Mechanisms for the advanced Asian summer monsoon onset since the mid-to-late 1990s
,”
J. Clim.
26
,
1993
2009
(
2013
).
49.
S. B.
Ratna
,
A.
Cherchi
,
P.
Joseph
,
S.
Behera
,
B.
Abish
, and
S.
Masina
, “
Moisture variability over the Indo-Pacific region and its influence on the Indian summer monsoon rainfall
,”
Clim. Dyn.
46
,
949
965
(
2016
).
50.
S.
Polanski
,
B.
Fallah
,
D. J.
Befort
,
S.
Prasad
, and
U.
Cubasch
, “
Regional moisture change over India during the past millennium: A comparison of multi-proxy reconstructions and climate model simulations
,”
Glob. Planet. Change
122
,
176
185
(
2014
).
51.
D.
Gushchina
,
I.
Zheleznova
,
A.
Osipov
, and
A.
Olchev
, “
Effect of various types of ENSO events on moisture conditions in the humid and subhumid tropics
,”
Atmosphere
11
,
1354
(
2020
).
52.
J. F.
Donges
,
J.
Heitzig
,
B.
Beronov
,
M.
Wiedermann
,
J.
Runge
,
Q.-Y.
Feng
,
L.
Tupikina
,
V.
Stolbova
,
R. V.
Donner
,
N.
Marwan
,
H. A.
Dijkstra
, and
J.
Kurths
, “
Unified functional network and nonlinear time series analysis for complex systems science: The pyunicorn package
,”
Chaos
25
,
113101
(
2015
).

Supplementary Material

You do not currently have access to this content.