Time-delayed optical feedback is known to trigger a wide variety of complex dynamical behavior in semiconductor lasers. Adding a second optical feedback loop is naturally expected to further increase the complexity of the system and its dynamics, but due to interference between the two feedback arms, it was also quickly identified as a way to improve the laser stability. While these two aspects have already been investigated, the influence of the feedback phases, i.e., sub-wavelength changes in the mirror positions, on the laser behavior still remains to be thoroughly studied, despite indications that this parameter could have a significant impact. Here, we analyze the effect of the feedback phase on the laser stability in a dual-feedback configuration. We show an increased sensitivity of the laser system to feedback phase changes when two-feedback loops are present and clarify the interplay between the frequency shift induced by the feedback and the interferometric effect between the two feedback arms.

1.
F. R.
Ruiz-Oliveras
and
A. N.
Pisarchik
, “
Phase-locking phenomenon in a semiconductor laser with external cavities
,”
Opt. Express
14
,
12859
(
2006
).
2.
A.
Többens
and
U.
Parlitz
, “
Dynamics of semiconductor lasers with external multicavities
,”
Phys. Rev. E
78
,
016210
(
2008
).
3.
J.
Ohtsubo
, Springer Series in Optical Sciences, Springer Series in Optical Sciences Vol. 111 (Springer, Berlin, 2013), pp. 1–590.
4.
A.
Uchida
,
Optical Communication with Chaotic Lasers: Applications of Nonlinear Dynamics and Synchronization
(
Wiley-VCH Verlag GmbH and Co. KGaA
,
Weinheim
,
2012
), pp.
1
574
.
5.
R.
Tkach
and
A.
Chraplyvy
, “
Regimes of feedback effects in 1.5- μm distributed feedback lasers
,”
J. Lightwave Technol.
4
,
1655
1661
(
1986
).
6.
S.
Donati
and
R. H.
Horng
, “The diagram of feedback regimes revisited,”
IEEE J. Selected Top. Quantum Electronics
19
(4), 1500309 (2013).
7.
F.
Rogister
,
P.
Mégret
,
O.
Deparis
,
M.
Blondel
, and
T.
Erneux
, “
Suppression of low-frequency fluctuations and stabilization of a semiconductor laser subjected to optical feedback from a double cavity: Theoretical results
,”
Opt. Lett.
24
,
1218
(
1999
).
8.
S. K.
Tavakoli
and
A.
Longtin
, “
Multi-delay complexity collapse
,”
Phys. Rev. Res.
2
,
033485
(
2020
).
9.
Y.
Liu
and
J.
Ohtsubo
, “
Dynamics and chaos stabilization of semiconductor lasers with optical feedback from an interferometer
,”
IEEE J. Quantum Electron.
33
,
1163
1169
(
1997
).
10.
Y.
Liu
,
J.
Ohtsubo
, and
S. Y.
Ye
, “
Dynamical and coherent characteristics of semiconductor lasers with external optical feedback
,”
Proc. SPIE
2886
,
120
127
(
1996
).
11.
T.
Lan
,
Z.
Cao
,
L.
Huang
,
Y.
Li
,
F.
Li
,
L.
Jiang
,
P. I.
Iroegbu
,
L.
Dang
,
Q.
Gao
,
L.
Liang
,
K.
Mei
,
S.
Fu
,
G.
Yin
, and
T.
Zhu
, “
Ultra-narrow-linewidth DFB laser array based on dual-cavity feedback
,”
Opt. Express
30
,
14617
(
2022
).
12.
C.
Zhang
,
C.
Xu
,
Y.
Jin
,
M.
Li
,
W.
Li
,
Y.
Liu
,
H.
Yuan
,
J.
Bai
,
J.
An
, and
N.
Zhu
, “
Narrow linewidth semiconductor laser with a multi-period-delayed feedback photonic circuit
,”
Opt. Express
30
,
15796
(
2022
).
13.
A.
Bakry
,
S.
Abdulrhmann
, and
M.
Ahmed
, “
Theoretical modeling of the dynamics of a semiconductor laser subject to double-reflector optical feedback
,”
J. Exp. Theor. Phys.
122
,
960
969
(
2016
).
14.
Y.
Hou
,
G.
Xia
,
W.
Yang
,
D.
Wang
,
E.
Jayaprasath
,
Z.
Jiang
,
C.
Hu
, and
Z.
Wu
, “
Prediction performance of reservoir computing system based on a semiconductor laser subject to double optical feedback and optical injection
,”
Opt. Express
26
,
10211
(
2018
).
15.
F.
Rogister
,
D. W.
Sukow
,
A.
Gavrielides
,
P.
Mégret
,
O.
Deparis
, and
M.
Blondel
, “
Experimental demonstration of suppression of low-frequency fluctuations and stabilization of an external-cavity laser diode
,”
Opt. Lett.
25
,
808
(
2000
).
16.
J.-G.
Wu
,
G.-Q.
Xia
, and
Z.-M.
Wu
, “
Suppression of time delay signatures of chaotic output in a semiconductor laser with double optical feedback
,”
Opt. Express
17
,
20124
(
2009
).
17.
V. Z.
Tronciu
,
C. R.
Mirasso
, and
P.
Colet
, “
Chaos-based communications using semiconductor lasers subject to feedback from an integrated double cavity
,”
J. Phys. B: At., Mol. Opt. Phys.
41
,
155401
(
2008
).
18.
V. Z.
Tronciu
,
I. V.
Ermakov
,
P.
Colet
, and
C. R.
Mirasso
, “
Chaotic dynamics of a semiconductor laser with double cavity feedback: Applications to phase shift keying modulation
,”
Opt. Commun.
281
,
4747
4752
(
2008
).
19.
M. W.
Lee
,
P.
Rees
,
K. A.
Shore
,
S.
Ortin
,
L.
Pesquera
, and
A.
Valle
, “
Dynamical characterisation of laser diode subject to double optical feedback for chaotic optical communications
,”
IEE Proc.: Optoelectron.
152
,
97
102
(
2005
).
20.
W.
Zhu
,
Q.
Chen
,
Y.
Wang
,
H.
Luo
,
H.
Wu
, and
B.
Ma
, “
Improvement on vibration measurement performance of laser self-mixing interference by using a pre-feedback mirror
,”
Optics and Lasers in Engineering
105
,
150
158
(
2018
).
21.
Y.
Ruan
,
B.
Liu
,
Y.
Yu
,
J.
Xi
,
Q.
Guo
, and
J.
Tong
, “
High sensitive sensing by a laser diode with dual optical feedback operating at period-one oscillation
,”
Appl. Phys. Lett.
115
,
1
6
(
2019
).
22.
F. P.
Mezzapesa
,
L. L.
Columbo
,
M.
Dabbicco
,
M.
Brambilla
, and
G.
Scamarcio
, “
QCL-based nonlinear sensing of independent targets dynamics
,”
Opt. Express
22
,
5867
(
2014
).
23.
M. W.
Lee
,
L.
Larger
,
V.
Udaltsov
,
É.
Genin
, and
J.-P.
Goedgebuer
, “
Demonstration of a chaos generator with two time delays
,”
Opt. Lett.
29
,
325
(
2004
).
24.
I.
Fischer
,
O.
Hess
,
W.
Elsäer
, and
E.
Göbel
, “
High-dimensional chaotic dynamics of an external cavity semiconductor laser
,”
Phys. Rev. Lett.
73
,
2188
2191
(
1994
).
25.
M.
Far Brusatori
and
N.
Volet
, “
Dynamics of semiconductor lasers under external optical feedback from both sides of the laser cavity
,”
Photonics
9
,
43
(
2022
).
26.
W. A. S.
Barbosa
,
E. J.
Rosero
,
J. R.
Tredicce
, and
J. R.
Rios Leite
, “
Statistics of chaos in a bursting laser
,”
Phys. Rev. A
99
,
053828
(
2019
).
27.
R.
de Mey
,
S. W.
Jolly
,
A.
Locquet
, and
M.
Virte
, “
Chaotic time-delay signature suppression in lasers using phase-controlled dual optical feedback
,”
Optics Continuum
1
,
2127
(
2022
).
28.
R.
Lang
and
K.
Kobayashi
, “
External optical feedback effects on semiconductor injection laser properties
,”
IEEE J. Quantum Electron.
16
,
347
355
(
1980
).
29.
Y.
Fan
,
Y.
Yu
,
J.
Xi
, and
Q.
Guo
, “Stability limit of a semiconductor laser with optical feedback,” in IEEE Journal of Quantum Electronics (IEEE, 2015), Vol. 51.
30.
R.
Pawlus
,
S.
Breuer
, and
M.
Virte
, “
Relative intensity noise reduction in a dual-state quantum-dot laser by optical feedback
,”
Opt. Lett.
42
,
4259
(
2017
).
31.
S.-S.
Li
,
V.
Pusino
,
S.-C.
Chan
, and
M.
Sorel
, “
Experimental investigation on feedback insensitivity in semiconductor ring lasers
,”
Opt. Lett.
43
,
1974
(
2018
).
You do not currently have access to this content.