The pathogen SARS-CoV-2 binds to the receptor angiotensin-converting enzyme 2 (ACE2) of the target cells and then replicates itself through the host, eventually releasing free virus particles. After infection, the CD8 T-cell response is triggered and appears to play a critical role in the defense against virus infections. Infected cells and their activated CD8 T-cells can cause tissue damage. Here, we established a mathematical model of within-host SARS-CoV-2 infection that incorporates the receptor ACE2, the CD8 T-cell response, and the damaged tissues. According to this model, we can get the basic reproduction number R 0 and the immune reproduction number R 1. We provide the theoretical proof for the stability of the disease-free equilibrium, immune-inactivated equilibrium, and immune-activated equilibrium. Finally, our numerical simulations show that the time delay in CD8 T-cell production can induce complex dynamics such as stability switching. These results provide insights into the mechanisms of SARS-CoV-2 infection and may help in the development of effective drugs against COVID-19.

1.
World Health Organization
, see https://covid19.who.int/table for WHO Coronavirus (COVID-19) Dashboard.
2.
D. A.
Tyrrell
and
M. L.
Bynoe
, “
Cultivation of a novel type of common-cold virus in organ cultures
,”
Br. Med. J.
1
,
1467
1470
(
1965
).
3.
A. A. F.
de Vries
, “
SARS-CoV-2/COVID-19: A primer for cardiologists
,”
Neth. Heart J.
28
,
366
383
(
2020
).
4.
S.
Alagu Lakshmi
,
R. M. B.
Shafreen
,
A.
Priya
, and
K. P.
Shunmugiah
, “
Ethnomedicines of Indian origin for combating COVID-19 infection by hampering the viral replication: Using structure-based drug discovery approach
,”
J. Biomol. Struct. Dyn.
39
,
4594
4609
(
2021
).
5.
A.
Warowicka
,
R.
Nawrot
, and
A.
Goździcka-Jóefiak
, “
Antiviral activity of berberine
,”
Arch. Virol.
165
,
1935
1945
(
2020
).
6.
C.
Wang
,
S.
Wang
,
D.
Li
et al., “
Human intestinal defensin 5 inhibits SARS-CoV-2 invasion by cloaking ACE2
,”
Gastroenterology
159
,
1145
1147.e4
(
2020
).
7.
N.
Amruta
,
E. B.
Engler-Chiurazzi
,
I. C.
Murray-Brown
et al., “
In vivo protection from SARS-CoV-2 infection by ATN-161 in k18-hACE2 transgenic mice
,”
Life Sci.
284
,
119881
(
2021
).
8.
Y.
Chen
,
Y. N.
Zhang
,
R.
Yan
et al., “
ACE2-targeting monoclonal antibody as potent and broad-spectrum coronavirus blocker
,”
Signal Transduction Targeted Ther.
6
,
315
(
2021
).
9.
A.
Sette
and
S.
Crotty
, “
Adaptive immunity to SARS-CoV-2 and COVID-19
,”
Cell
184
,
861
80
(
2021
).
10.
A. T.
Tan
,
M.
Linster
,
C. W.
Tan
et al., “
Early induction of functional SARS-CoV-2-specific T cells associates with rapid viral clearance and mild disease in COVID-19 patients
,”
Cell Rep.
34
,
108728
(
2021
).
11.
I.
Schulien
,
J.
Kemming
,
V.
Oberhardt
et al., “
Characterization of pre-existing and induced SARS-CoV-2-specific CD8+ T cells
,”
Nat. Med.
27
,
78
85
(
2021
).
12.
M.
Liao
,
Y.
Liu
,
J.
Yuan
et al., “
Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19
,”
Nat. Med.
26
,
842
844
(
2020
).
13.
R. M.
Anderson
and
R. M.
May
,
Infectious Diseases of Humans: Dynamics and Control
(
Oxford University Press
,
Oxford
,
1991
).
14.
A. S.
Perelson
and
P. W.
Nelson
, “
Mathematical analysis of HIV-1 dynamics in vivo
,”
SIAM Rev.
41
,
3
44
(
1999
).
15.
M. A.
Nowak
and
R. M.
May
,
Virus Dynamics: Mathematics Principles of Immunology and Virology
(
Oxford University Press
,
Oxford
,
2000
).
16.
S.
Wang
,
Y.
Pan
,
Q.
Wang
,
H.
Miao
,
A. N.
Brown
, and
L.
Rong
, “
Modeling the viral dynamics of SARS-CoV-2 infection
,”
Math. Biosci.
328
,
108438
(
2020
).
17.
A.
Goyal
,
E. F.
Cardozo-Ojeda
, and
J. T.
Schiffer
, “
Potency and timing of antiviral therapy as determinants of duration of SARS-CoV-2 shedding and intensity of inflammatory response
,”
Signal Transduction Targeted Ther.
6
,
eabc7112
(
2020
).
18.
A.
Gonçlves
,
J.
Bertrand
,
R.
Ke
et al., “
Timing of antiviral treatment initiation is critical to reduce SARS-CoV-2 viral load
,”
CPT: Pharmacometrics Syst. Pharmacol.
9
,
509
514
(
2020
).
19.
R.
Ke
,
C.
Zitzmann
,
D. D.
Ho
,
R. M.
Ribeiro
, and
A. S.
Perelson
, “
In vivo kinetics of SARS-CoV-2 infection and its relationship with a person’s infectiousness
,”
Proc. Natl. Acad. Sci. U.S.A.
118
,
e2111477118
(
2021
).
20.
B.
Chatterjee
,
H.
Singh Sandhu
, and
N. M.
Dixit
, “
Modeling recapitulates the heterogeneous outcomes of SARS-CoV-2 infection and quantifies the differences in the innate immune and CD8 T-cell responses between patients experiencing mild and severe symptoms
,”
PLoS Pathogens
18
,
e1010630
(
2022
).
21.
P.
Padmanabhan
and
N. M.
Dixit
, “
Mathematical model of viral kinetics in vitro estimates the number of e2-cd81 complexes necessary for hepatitis c virus entry
,”
PLoS Comput. Biol.
7
,
e1002307
(
2011
).
22.
P.
Padmanabhan
and
N. M.
Dixit
, “
Viral kinetics suggests a reconciliation of the disparate observations of the modulation of claudin-1 expression on cells exposed to hepatitis C virus
,”
PLoS One
7
,
e36107
(
2012
).
23.
P.
Padmanabhan
and
N. M.
Dixit
, “
Modeling suggests a mechanism of synergy between hepatitis c virus entry inhibitors and drugs of other classes
,”
CPT Pharmacometrics Syst. Pharmacol.
4
,
445
453
(
2015
).
24.
P.
Padmanabhan
,
R.
Desikan
, and
N. M.
Dixit
, “
Targeting TMPRSS2 and Cathepsin B/L together may be synergistic against SARS-CoV-2 infection
,”
PLoS Comput. Biol.
16
,
e1008461
(
2020
).
25.
P.
Padmanabhan
and
N. M.
Dixit
, “
Modelling how increased Cathepsin B/L and decreased TMPRSS2 usage for cell entry by the SARS-CoV-2 Omicron variant may affect the efficacy and synergy of TMPRSS2 and Cathepsin B/L inhibitors
,”
J. Theor. Biol.
572
,
111568
(
2023
).
26.
S.
Tang
,
W.
Ma
, and
P.
Bai
, “
A novel dynamic model describing the spread of the MERS-CoV and the expression of dipeptidyl peptidase 4
,”
Comput. Math. Methods Med.
2017
,
5285810
(
2017
).
27.
A. N.
Chatterjee
and
F.
Al Basir
, “
A model for SARS-CoV-2 infection with treatment
,”
Comput. Math. Methods Med.
2020
,
1352982
(
2020
).
28.
T.
Keyoumu
,
W.
Ma
, and
K.
Guo
, “
Global stability of a MERS-CoV infection model with CTL immune response and intracellular delay
,”
Mathematics
11
,
1066
(
2023
).
29.
T.
Keyoumu
,
W.
Ma
, and
K.
Guo
, “
Existence of positive periodic solutions for a class of in-host MERS-CoV infection model with periodic coefficients
,”
AIMS Math.
7
,
3083
3096
(
2022
).
30.
T.
Keyoumu
,
K.
Guo
, and
W.
Ma
, “
Periodic oscillation for a class of in-host MERS-CoV infection model with CTL immune response
,”
Math. Biosci. Eng.
19
,
12247
12259
(
2022
).
31.
J.
Lv
and
W.
Ma
, “
Global asymptotic stability of a delay differential equation model for SARS-CoV-2 virus infection mediated by ACE2 receptor protein
,”
Appl. Math. Lett.
142
,
108631
(
2023
).
32.
A.
Korobeinikov
and
P. K.
Maini
, “
A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence
,”
Math. Biosci. Eng.
1
,
57
60
(
2004
).
33.
A.
Korobeinikov
, “
Global properties of basic virus dynamics models
,”
Bull. Math. Biol.
66
,
879
883
(
2004
).
34.
C. C.
McCluskey
, “
Complete global stability for an SIR epidemic model with delay-distributed or discrete
,”
Nonlinear Anal. Real World Appl.
11
,
55
59
(
2010
).
35.
Q.
Xie
,
D.
Huang
,
S.
Zhang
, and
J.
Cao
, “
Analysis of a viral infection model with delayed immune response
,”
Appl. Math. Modell.
34
,
2388
2395
(
2010
).
36.
R.
Xu
, “
Global stability of an HIV-1 infection model with saturation infection and intracellular delay
,”
J. Math. Anal. Appl.
375
,
75
81
(
2011
).
37.
G.
Huang
,
W.
Ma
, and
Y.
Takeuchi
, “
Global analysis for delay virus dynamics model with Beddington-DeAngelis functional response
,”
Appl. Math. Lett.
24
,
1199
1203
(
2011
).
38.
Y. N.
Kyrychko
and
K. B.
Blyuss
, “
Vaccination games and imitation dynamics with memory
,”
Chaos
33
,
033134
(
2023
).
39.
S.
Upadhya
,
J.
Rehman
,
A. B.
Malik
, and
S.
Chen
, “
Mechanisms of lung injury induced by SARS-CoV-2 infection
,”
Physiology
37
,
88
100
(
2022
).
40.
L.
Carsana
,
A.
Sonzogni
,
A.
Nasr
et al., “
Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: A two-centre descriptive study
,”
Lancet Infect. Dis.
20
,
1135
1140
(
2020
).
41.
C.
Margaroli
,
P.
Benson
,
N. S.
Sharma
et al., “
Spatial mapping of SARS-CoV-2 and H1N1 lung injury identifies differential transcriptional signatures
,”
Cell Rep. Med.
2
,
100242
(
2021
).
42.
R.
Nienhold
,
Y.
Ciani
,
V. H.
Koelzer
et al., “
Two distinct immunopathological profiles in autopsy lungs of COVID-19
,”
Nat. Commun.
11
,
5086
(
2020
).
43.
E.
Mochan
,
T. J.
Sego
,
L.
Gaona
,
E.
Rial
, and
G. B.
Ermentrout
, “
Compartmental model suggests importance of innate immune response to COVID-19 infection in rhesus macaques
,”
Bull. Math. Biol.
83
,
79
(
2021
).
44.
Y.
Kuang
,
Delay Differential Equation with Application in Population Dynamics
(
Academic Press
,
1993
).
45.
J. K.
Hale
and
S. M. V.
Lunel
,
Introduction to Functional Differential Equations
(
Springer
,
New York
,
1993
).
46.
O.
Diekmann
,
J. A. P.
Heesterbeek
, and
J. A.
Metz
, “
On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populatons
,”
J. Math. Biol.
28
,
365
382
(
1990
).
47.
P.
Van den Driessche
and
J.
Watmough
, “
Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission
,”
Math. Biosci.
180
,
29
48
(
2002
).
48.
X.
Liang
,
L.
Zhang
, and
X. Q.
Zhao
, “
Basic reproduction ratios for periodic abstract functional differential equations (with application to a spatial model for Lyme disease)
,”
J. Dyn. Differ. Equ.
31
,
1247
1278
(
2019
).
49.
Y.
Saito
,
T.
Hara
, and
W.
Ma
, “
Necessary and sufficient conditions for permanence and global stability of a Lotka-Volterra system with two delays
,”
J. Math. Anal. Appl.
236
,
534
556
(
1999
).
50.
E.
Beretta
and
Y.
Kuang
, “
Geometric stability switch criteria in delay differential systems with delay dependent parameters
,”
SIAM J. Math. Anal.
33
,
1144
1165
(
2002
).
51.
E.
Beretta
and
Y.
Tang
, “
Extension of a geometric stability switch criterion
,”
Funkcialaj Ekvacioj
46
,
337
361
(
2003
).
52.
M. Y.
Li
and
H.
Shu
, “
Multiple stable periodic oscillations in a mathematical model of CTL response to HTLV-I infection
,”
Bull. Math. Biol.
73
,
1774
1793
(
2011
).
53.
M. Y.
Li
and
H.
Shu
, “
Global dynamics of a mathematical model for HTLV-I infection of CD4+ T cells with delayed CTL response
,”
Nonlinear Anal.: Real World Appl.
13
,
1080
1092
(
2012
).
54.
A. L.
Jenner
,
R. A.
Aogo
,
S.
Alfonso
et al., “
COVID-19 virtual patient cohort suggests immune mechanisms driving disease outcomes
,”
PLoS Pathogens
17
,
e1009753
(
2021
).
55.
S.
Suvarnapathaki
,
D.
Chauhan
,
A.
Nguyen
,
M.
Ramalingam
, and
G.
Camci-Unal
, “
Advances in targeting ACE2 for developing COVID-19 therapeutics
,”
Ann. Biomed. Eng.
50
,
1734
1749
(
2022
).
56.
S.
Alagu Lakshmi
,
R. M. B.
Shafreen
,
A.
Priya
, and
K. P.
Shunmugiah
, “
Ethnomedicines of Indian origin for combating COVID-19 infection by hampering the viral replication: Using structure-based drug discovery approach
,”
J. Biomol. Struct. Dyn.
39
,
4594
4609
(
2021
).
57.
A.
Warowicka
,
R.
Nawrot
, and
A.
Goździcka-Józefiak
, “
Antiviral activity of berberine
,”
Arch. Virol.
165
,
1935
1945
(
2020
).
58.
A.
Goyal
,
E. F.
Cardozo-Ojeda
, and
J. T.
Schiffer
, “
Potency and timing of antiviral therapy as determinants of duration of SARS-CoV-2 shedding and intensity of inflammatory response
,”
Sci. Adv.
6
,
eabc7112
(
2020
).
59.
B. E.
Young
,
S. W. X.
Ong
,
S.
Kalimuddin
et al., “
Epidemiologic features and clinical course of patients infected with SARS-CoV-2 in Singapore
,”
J. Am. Med. Assoc.
323
,
1488
1494
(
2020
).
60.
S.
Shahi
,
F. H.
Fenton
, and
E. M.
Cherry
, “
A machine-learning approach for long-term prediction of experimental cardiac action potential time series using an autoencoder and echo state networks
,”
Chaos
32
,
063117
(
2022
).
61.
O. O.
Aybar
and
M.
Senturk
, “
Implementation of a triangular probabilistic distribution for optimal parametrization of the SEIR model recovery rates with delay
,”
Chaos
33
,
093137
(
2023
).
You do not currently have access to this content.