It is a well-understood fact that the transport of excitations throughout a lattice is intimately governed by the underlying structures. Hence, it is only natural to recognize that the dispersion of information also has to depend on the lattice geometry. In the present work, we demonstrate that two-dimensional lattices described by the Bose–Hubbard model exhibit information scrambling for systems as little as two hexagons. However, we also find that the out-of-time-ordered correlator (OTOC) shows the exponential decay characteristic for quantum chaos only for a judicious choice of local observables. More generally, the OTOC is better described by Gaussian-exponential convolutions, which alludes to the close similarity of information scrambling and decoherence theory.

1
M.
Berry
, “
Quantum chaology, not quantum chaos
,”
Phys. Scr.
40
,
335
(
1989
).
2
A.
Touil
and
S.
Deffner
, “Information scrambling—A quantum thermodynamic perspective,” arXiv:2401.05305.
3
P.
Hayden
and
J.
Preskill
, “
Black holes as mirrors: Quantum information in random subsystems
,”
J. High Energy Phys.
2007
,
120
.
4
A.
Touil
and
S.
Deffner
, “
Information scrambling versus decoherence—Two competing sinks for entropy
,”
PRX Quantum
2
,
010306
(
2021
).
5
D. A.
Roberts
and
B.
Swingle
, “
Lieb–Robinson bound and the butterfly effect in quantum field theories
,”
Phys. Rev. Lett.
117
,
091602
(
2016
).
6
N.
Anand
and
P.
Zanardi
, “
BROTOCs and quantum information scrambling at finite temperature
,”
Quantum
6
,
746
(
2022
).
7
D.
Yuan
,
S.-Y.
Zhang
,
Y.
Wang
,
L.-M.
Duan
, and
D.-L.
Deng
, “
Quantum information scrambling in quantum many-body scarred systems
,”
Phys. Rev. Res.
4
,
023095
(
2022
).
8
P.
Hayden
and
J.
Preskill
, “
Black holes as mirrors: Quantum information in random subsystems
,”
JHEP
2007
,
120
.
9
M. S.
Blok
,
V. V.
Ramasesh
,
T.
Schuster
,
K.
O’Brien
,
J. M.
Kreikebaum
,
D.
Dahlen
,
A.
Morvan
,
B.
Yoshida
,
N. Y.
Yao
, and
I.
Siddiqi
, “
Quantum information scrambling on a superconducting qutrit processor
,”
Phys. Rev. X
11
,
021010
(
2021
).
10
Y.
Huang
,
Y.-L.
Zhang
, and
X.
Chen
, “
Out-of-time-ordered correlators in many-body localized systems
,”
Ann. Phys.
529
,
1600318
(
2017
).
11
N.
Yunger Halpern
, “
Jarzynski-like equality for the out-of-time-ordered correlator
,”
Phys. Rev. A
95
,
012120
(
2017
).
12
B.
Swingle
, “
Unscrambling the physics of out-of-time-order correlators
,”
Nat. Phys.
14
,
988
990
(
2018
).
13
H.
Li
,
E.
Halperin
,
R. R. W.
Wang
, and
J. L.
Bohn
, “
Out-of-time-order correlator for the van der Waals potential
,”
Phys. Rev. A
107
,
032818
(
2023
).
14
D. A.
Roberts
,
D.
Stanford
, and
L.
Susskind
, “
Localized shocks
,”
JHEP
2015
,
51
.
15
D. A.
Roberts
and
D.
Stanford
, “
Diagnosing chaos using four-point functions in two-dimensional conformal field theory
,”
Phys. Rev. Lett.
115
,
131603
(
2015
).
16
R.
Fan
,
P.
Zhang
,
H.
Shen
, and
H.
Zhai
, “
Out-of-time-order correlation for many-body localization
,”
Sci. Bull.
62
,
707
711
(
2017
).
17
B.
Swingle
,
G.
Bentsen
,
M.
Schleier-Smith
, and
P.
Hayden
, “
Measuring the scrambling of quantum information
,”
Phys. Rev. A
94
,
040302
(
2016
).
18
J. S.
Cotler
,
D.
Ding
, and
G. R.
Penington
, “
Out-of-time-order operators and the butterfly effect
,”
Ann. Phys.
396
,
318
333
(
2018
).
19
K.
Hashimoto
,
K.
Murata
, and
R.
Yoshii
, “
Out-of-time-order correlators in quantum mechanics
,”
JHEP
2017
,
138
.
20
Z.
Tian
,
Y.
Lin
,
U. R.
Fischer
, and
J.
Du
, “
Testing the upper bound on the speed of scrambling with an analogue of Hawking radiation using trapped ions
,”
Eur. Phys. J. C
82
,
212
(
2022
).
21
J.
Maldacena
,
S. H.
Shenker
, and
D.
Stanford
, “
A bound on chaos
,”
JHEP
2016
,
106
.
22
T.
Xu
,
T.
Scaffidi
, and
X.
Cao
, “
Does scrambling equal chaos?
,”
Phys. Rev. Lett.
124
,
140602
(
2020
).
23
J.
Maldacena
and
D.
Stanford
, “
Remarks on the Sachdev–Ye–Kitaev model
,”
Phys. Rev. D
94
,
106002
(
2016
).
24
I.
García-Mata
,
R. A.
Jalabert
, and
D. A.
Wisniacki
, “Out-of-time-order correlators and quantum chaos,” arXiv:2209.07965.
25
J.
Wang
,
G.
Benenti
,
G.
Casati
, and
W.-G.
Wang
, “
Complexity of quantum motion and quantum-classical correspondence: A phase-space approach
,”
Phys. Rev. Res.
2
,
043178
(
2020
).
26
J.
Wang
,
G.
Benenti
,
G.
Casati
, and
W.-G.
Wang
, “
Quantum chaos and the correspondence principle
,”
Phys. Rev. E
103
,
L030201
(
2021
).
27
N.
Dowling
,
P.
Kos
, and
K.
Modi
, “
Scrambling is necessary but not sufficient for chaos
,”
Phys. Rev. Lett.
131
,
180403
(
2023
).
28
E.
Iyoda
and
T.
Sagawa
, “
Scrambling of quantum information in quantum many-body systems
,”
Phys. Rev. A
97
,
042330
(
2018
).
29
S.
Sahu
,
S.
Xu
, and
B.
Swingle
, “
Scrambling dynamics across a thermalization-localization quantum phase transition
,”
Phys. Rev. Lett.
123
,
165902
(
2019
).
30
S.
Sahu
and
B.
Swingle
, “
Information scrambling at finite temperature in local quantum systems
,”
Phys. Rev. B
102
,
184303
(
2020
).
31
S.
Sachdev
and
J.
Ye
, “
Gapless spin-fluid ground state in a random quantum Heisenberg magnet
,”
Phys. Rev. Lett.
70
,
3339
3342
(
1993
).
32
V.
Rosenhaus
, “
An introduction to the SYK model
,”
J. Phys. A: Math. Theor.
52
,
323001
(
2019
).
33
S.
Plugge
,
E.
Lantagne-Hurtubise
, and
M.
Franz
, “
Revival dynamics in a traversable wormhole
,”
Phys. Rev. Lett.
124
,
221601
(
2020
).
34
A. M.
García-García
,
Y.
Jia
,
D.
Rosa
, and
J. J. M.
Verbaarschot
, “
Sparse Sachdev–Ye–Kitaev model, quantum chaos, and gravity duals
,”
Phys. Rev. D
103
,
106002
(
2021
).
35
E.
Cáceres
,
A.
Misobuchi
, and
R.
Pimentel
, “
Sparse SYK and traversable wormholes
,”
JHEP
2021
,
15
.
36
S.
Xu
,
L.
Susskind
,
Y.
Su
, and
B.
Swingle
, “A sparse model of quantum holography,” arXiv:2008.02303.
37
J.
Kim
,
J.
Murugan
,
J.
Olle
, and
D.
Rosa
, “
Operator delocalization in quantum networks
,”
Phys. Rev. A
105
,
L010201
(
2022
).
38
A.
Andreanov
,
M.
Carrega
,
J.
Murugan
,
J.
Olle
,
D.
Rosa
, and
R.
Shir
, “From Dyson models to many-body quantum chaos,” arXiv:2302.00917.
39
A. R.
Kolovsky
, “
Bose–Hubbard Hamiltonian: Quantum chaos approach
,”
Int. J. Mod. Phys. B
30
,
1630009
(
2016
).
40
H.
Shen
,
P.
Zhang
,
R.
Fan
, and
H.
Zhai
, “
Out-of-time-order correlation at a quantum phase transition
,”
Phys. Rev. B
96
,
054503
(
2017
).
41
J.
Braumüller
,
A. H.
Karamlou
,
Y.
Yanay
,
B.
Kannan
,
D.
Kim
,
M.
Kjaergaard
,
A.
Melville
,
B. M.
Niedzielski
,
Y.
Sung
,
A.
Vepsäläinen
,
R.
Winik
,
J. L.
Yoder
,
T. P.
Orlando
,
S.
Gustavsson
,
C.
Tahan
, and
W. D.
Oliver
, “
Probing quantum information propagation with out-of-time-ordered correlators
,”
Nat. Phys.
18
,
172
178
(
2022
).
42
J. K.
Freericks
and
H.
Monien
, “
Phase diagram of the Bose–Hubbard model
,”
EPL (Europhys. Lett.)
26
,
545
(
1994
).
43
B.
Gardas
,
J.
Dziarmaga
, and
W. H.
Zurek
, “
Dynamics of the quantum phase transition in the one-dimensional Bose–Hubbard model: Excitations and correlations induced by a quench
,”
Phys. Rev. B
95
,
104306
(
2017
).
44
J.
Dziarmaga
and
J. M.
Mazur
, “
Tensor network simulation of the quantum Kibble–Zurek quench from the Mott to the superfluid phase in the two-dimensional Bose–Hubbard model
,”
Phys. Rev. B
107
,
144510
(
2023
).
45
B.
Wang
and
Y.
Jiang
, “
Bogoliubov approach to superfluid-Bose glass phase transition of a disordered Bose–Hubbard model in weakly interacting regime
,”
Eur. Phys. J. D
70
,
257
(
2016
).
46
C.
Kollath
,
A. M.
Läuchli
, and
E.
Altman
, “
Quench dynamics and nonequilibrium phase diagram of the Bose–Hubbard model
,”
Phys. Rev. Lett.
98
,
180601
(
2007
).
47
G.
Nakerst
and
M.
Haque
, “
Chaos in the three-site Bose–Hubbard model: Classical versus quantum
,”
Phys. Rev. E
107
,
024210
(
2023
).
48
A. B.-S. T. O.
Wehling
and
A.
Balatsky
, “
Dirac materials
,”
Adv. Phys.
63
,
1
76
(
2014
).
49
J. R.
González Alonso
,
N.
Yunger Halpern
, and
J.
Dressel
, “
Out-of-time-ordered-correlator quasiprobabilities robustly witness scrambling
,”
Phys. Rev. Lett.
122
,
040404
(
2019
).
50
B.
Yan
and
W. H.
Zurek
, “
Decoherence factor as a convolution: An interplay between a Gaussian and an exponential coherence loss
,”
New J. Phys.
24
,
113029
(
2022
).
51
D. P.
Arovas
,
E.
Berg
,
S. A.
Kivelson
, and
S.
Raghu
, “
The Hubbard model
,”
Ann. Rev. Condens. Matter Phys.
13
,
239
274
(
2022
).
52
O.
Dutta
,
M.
Gajda
,
P.
Hauke
,
M.
Lewenstein
,
D.-S.
Lühmann
,
B. A.
Malomed
,
T.
Sowiński
, and
J.
Zakrzewski
, “
Non-standard Hubbard models in optical lattices: A review
,”
Rep. Prog. Phys.
78
,
066001
(
2015
).
53
M.
Greiner
,
O.
Mandel
,
T.
Esslinger
,
T. W.
Hänsch
, and
I.
Bloch
, “
Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms
,”
Nature
415
,
39
44
(
2002
).
54
J.
Dziarmaga
and
W. H.
Zurek
, “
Quench in the 1D Bose–Hubbard model: Topological defects and excitations from the Kosterlitz–Thouless phase transition dynamics
,”
Sci. Rep.
4
,
5950
(
2014
).
55
K.
Shimizu
,
Y.
Kuno
,
T.
Hirano
, and
I.
Ichinose
, “
Dynamics of a quantum phase transition in the Bose–Hubbard model: Kibble–Zurek mechanism and beyond
,”
Phys. Rev. A
97
,
033626
(
2018
).
56
W.
Weiss
,
M.
Gerster
,
D.
Jaschke
,
P.
Silvi
, and
S.
Montangero
, “
Kibble–Zurek scaling of the one-dimensional Bose–Hubbard model at finite temperatures
,”
Phys. Rev. A
98
,
063601
(
2018
).
57
H.
Goldstein
,
C.
Poole
, and
J.
Safko
,
Classical Mechanics
(
American Association of Physics Teachers
,
2002
).
58
S. H.
Shenker
and
D.
Stanford
, “
Black holes and the butterfly effect
,”
JHEP
2014
,
1
25
.
59
Z.
Gong
,
T.
Guaita
, and
J. I.
Cirac
, “
Long-range free fermions: Lieb–Robinson bound, clustering properties, and topological phases
,”
Phys. Rev. Lett.
130
,
070401
(
2023
).
60
B.
Nachtergaele
,
H.
Raz
,
B.
Schlein
, and
R.
Sims
, “
Lieb–Robinson bounds for harmonic and anharmonic lattice systems
,”
Commun. Math. Phys.
286
,
1073
1098
(
2009
).
61
M. B.
Hastings
, “Locality in quantum systems,” arXiv:1008.5137 [math-ph] (2010).
62
K. A.
Landsman
,
C.
Figgatt
,
T.
Schuster
,
N. M.
Linke
,
B.
Yoshida
,
N. Y.
Yao
, and
C.
Monroe
, “
Verified quantum information scrambling
,”
Nature
567
,
61
(
2019
).
63
M. K.
Joshi
,
A.
Elben
,
B.
Vermersch
,
T.
Brydges
,
C.
Maier
,
P.
Zoller
,
R.
Blatt
, and
C. F.
Roos
, “
Quantum information scrambling in a trapped-ion quantum simulator with tunable range interactions
,”
Phys. Rev. Lett.
124
,
240505
(
2020
).
64
A. M.
Green
,
A.
Elben
,
C. H.
Alderete
,
L. K.
Joshi
,
N. H.
Nguyen
,
T. V.
Zache
,
Y.
Zhu
,
B.
Sundar
, and
N. M.
Linke
, “
Experimental measurement of out-of-time-ordered correlators at finite temperature
,”
Phys. Rev. Lett.
128
,
140601
(
2022
).
65
M.
Gärttner
,
J. G.
Bohnet
,
A.
Safavi-Naini
,
M. L.
Wall
,
J. J.
Bollinger
, and
A. M.
Rey
, “
Measuring out-of-time-order correlations and multiple quantum spectra in a trapped-ion quantum magnet
,”
Nat. Phys.
13
,
781
786
(
2017
).
66
M.
Gärttner
,
P.
Hauke
, and
A. M.
Rey
, “
Relating out-of-time-order correlations to entanglement via multiple-quantum coherences
,”
Phys. Rev. Lett.
120
,
040402
(
2018
).
67
W.
Ford
, “Krylov subspace methods,” in Numerical Linear Algebra with Applications, edited by W. Ford (Academic Press, Boston, MA, 2015), Chap. 21, pp. 491–532.
68
B.
Yan
,
L.
Cincio
, and
W. H.
Zurek
, “
Information scrambling and Loschmidt echo
,”
Phys. Rev. Lett.
124
,
160603
(
2020
).
69
V. V.
Flambaum
and
F. M.
Izrailev
, “
Excited eigenstates and strength functions for isolated systems of interacting particles
,”
Phys. Rev. E
61
,
2539
(
2000
).
70
V. V.
Flambaum
and
F. M.
Izrailev
, “
Unconventional decay law for excited states in closed many-body systems
,”
Phys. Rev. E
64
,
026124
(
2001
).
71
F. M.
Cucchietti
, “The Loschmidt echo in classically chaotic systems: Quantum chaos, irreversibility and decoherence,” arXiv:quant-ph/0410121[quant-ph] (2004).
72
T.
Gorin
,
T.
Prosen
,
T. H.
Seligman
, and
M.
Žnidarič
, “
Dynamics of Loschmidt echoes and fidelity decay
,”
Phys. Rep.
435
,
33
156
(
2006
).
73
N.
Ares
and
D. A.
Wisniacki
, “
Loschmidt echo and the local density of states
,”
Phys. Rev. E
80
,
046216
(
2009
).
74
A.
Touil
and
S.
Deffner
, “
Quantum scrambling and the growth of mutual information
,”
Quantum Sci. Technol.
5
,
035005
(
2020
).
75
A.
Seshadri
,
V.
Madhok
, and
A.
Lakshminarayan
, “
Tripartite mutual information, entanglement, and scrambling in permutation symmetric systems with an application to quantum chaos
,”
Phys. Rev. E
98
,
052205
(
2018
).
76
P.
Hosur
,
X.-L.
Qi
,
D. A.
Roberts
, and
B.
Yoshida
, “
Chaos in quantum channels
,”
JHEP
2016
,
4
.
77
L.-P.
Han
,
J.
Zou
,
H.
Li
, and
B.
Shao
, “
Quantum information scrambling in non-Markovian open quantum system
,”
Entropy
24
,
1532
(
2022
).
You do not currently have access to this content.