Higher-order structures, consisting of more than two individuals, provide a new perspective to reveal the missed non-trivial characteristics under pairwise networks. Prior works have researched various higher-order networks, but research for evaluating the effects of higher-order structures on network functions is still scarce. In this paper, we propose a framework to quantify the effects of higher-order structures (e.g., 2-simplex) and vital functions of complex networks by comparing the original network with its simplicial model. We provide a simplicial model that can regulate the quantity of 2-simplices and simultaneously fix the degree sequence. Although the algorithm is proposed to control the quantity of 2-simplices, results indicate it can also indirectly control simplexes more than 2-order. Experiments on spreading dynamics, pinning control, network robustness, and community detection have shown that regulating the quantity of 2-simplices changes network performance significantly. In conclusion, the proposed framework is a general and effective tool for linking higher-order structures with network functions. It can be regarded as a reference object in other applications and can deepen our understanding of the correlation between micro-level network structures and global network functions.

1.
M. E.
Newman
, “
The structure and function of complex networks
,”
SIAM Rev.
45
,
167
256
(
2003
).
2.
S.
Boccaletti
,
V.
Latora
,
Y.
Moreno
,
M.
Chavez
, and
D.-U.
Hwang
, “
Complex networks: Structure and dynamics
,”
Phys. Rep.
424
,
175
308
(
2006
).
3.
D.-B.
Chen
,
H.
Gao
,
L.
, and
T.
Zhou
, “
Identifying influential nodes in large-scale directed networks: The role of clustering
,”
PLoS One
8
,
e77455
(
2013
).
4.
R.
Pastor-Satorras
and
A.
Vespignani
, “
Epidemic dynamics in finite size scale-free networks
,”
Phys. Rev. E
65
,
035108
(
2002
).
5.
M.
Boguá
,
R.
Pastor-Satorras
, and
A.
Vespignani
, “Epidemic spreading in complex networks with degree correlations,” in Statistical Mechanics of Complex Networks (Springer, 2003), pp. 127–147.
6.
M.
Barthélemy
,
A.
Barrat
,
R.
Pastor-Satorras
, and
A.
Vespignani
, “
Dynamical patterns of epidemic outbreaks in complex heterogeneous networks
,”
J. Theor. Biol.
235
,
275
288
(
2005
).
7.
D.
Centola
and
M.
Macy
, “
Complex contagions and the weakness of long ties
,”
Am. J. Sociol.
113
,
702
734
(
2007
).
8.
D.
Centola
, “
The spread of behavior in an online social network experiment
,”
Science
329
,
1194
1197
(
2010
).
9.
M.
Karsai
,
G.
Iniguez
,
K.
Kaski
, and
J.
Kertész
, “
Complex contagion process in spreading of online innovation
,”
J. R. Soc. Interface
11
,
20140694
(
2014
).
10.
U.
Alvarez-Rodriguez
,
F.
Battiston
,
G. F.
de Arruda
,
Y.
Moreno
,
M.
Perc
, and
V.
Latora
, “
Evolutionary dynamics of higher-order interactions in social networks
,”
Nat. Hum. Behav.
5
,
586
595
(
2021
).
11.
A.
Sanchez-Gorostiaga
,
D.
Bajić
,
M. L.
Osborne
,
J. F.
Poyatos
, and
A.
Sanchez
, “
High-order interactions distort the functional landscape of microbial consortia
,”
PLoS Biol.
17
,
e3000550
(
2019
).
12.
A. E.
Sizemore
,
C.
Giusti
,
A.
Kahn
,
J. M.
Vettel
,
R. F.
Betzel
, and
D. S.
Bassett
, “
Cliques and cavities in the human connectome
,”
J. Comput. Neurosci.
44
,
115
145
(
2018
).
13.
E. H.
Spanier
,
Algebraic Topology
(
Springer Science & Business Media
,
1989
).
14.
I.
Iacopini
,
G.
Petri
,
A.
Barrat
, and
V.
Latora
, “
Simplicial models of social contagion
,”
Nat. Commun.
10
,
1
9
(
2019
).
15.
F.
Battiston
,
G.
Cencetti
,
I.
Iacopini
,
V.
Latora
,
M.
Lucas
,
A.
Patania
,
J.-G.
Young
, and
G.
Petri
, “
Networks beyond pairwise interactions: Structure and dynamics
,”
Phys. Rep.
874
,
1
92
(
2020
).
16.
L.
Torres
,
A. S.
Blevins
,
D.
Bassett
, and
T.
Eliassi-Rad
, “
The why, how, and when of representations for complex systems
,”
SIAM Rev.
63
,
435
485
(
2021
).
17.
F.
Battiston
,
E.
Amico
,
A.
Barrat
,
G.
Bianconi
,
G.
Ferraz de Arruda
,
B.
Franceschiello
,
I.
Iacopini
,
S.
Kéfi
,
V.
Latora
,
Y.
Moreno
, and
M. M.
Murray
, “
The physics of higher-order interactions in complex systems
,”
Nat. Phys.
17
,
1093
1098
(
2021
).
18.
D.
Shi
,
L.
, and
G.
Chen
, “
Totally homogeneous networks
,”
Natl. Sci. Rev.
6
,
962
969
(
2019
).
19.
M. W.
Reimann
,
M.
Nolte
,
M.
Scolamiero
,
K.
Turner
,
R.
Perin
,
G.
Chindemi
,
P.
Dłotko
,
R.
Levi
,
K.
Hess
, and
H.
Markram
, “
Cliques of neurons bound into cavities provide a missing link between structure and function
,”
Front. Comput. Neurosci.
11
,
48
(
2017
).
20.
D.
Shi
,
G.
Chen
,
W. W. K.
Thong
, and
X.
Yan
, “
Searching for optimal network topology with best possible synchronizability
,”
IEEE Circuits Syst. Mag.
13
,
66
75
(
2013
).
21.
J. J.
Torres
and
G.
Bianconi
, “
Simplicial complexes: Higher-order spectral dimension and dynamics
,”
J. Phys.: Complex.
1
,
015002
(
2020
).
22.
M. T.
Schaub
,
A. R.
Benson
,
P.
Horn
,
G.
Lippner
, and
A.
Jadbabaie
, “
Random walks on simplicial complexes and the normalized Hodge 1-Laplacian
,”
SIAM Rev.
62
,
353
391
(
2020
).
23.
S.
Mukherjee
and
J.
Steenbergen
, “
Random walks on simplicial complexes and harmonics
,”
Random Struct. Algorithms
49
,
379
405
(
2016
).
24.
O. T.
Courtney
and
G.
Bianconi
, “
Generalized network structures: The configuration model and the canonical ensemble of simplicial complexes
,”
Phys. Rev. E
93
,
062311
(
2016
).
25.
K.
Kovalenko
,
I.
Sendiña-Nadal
,
N.
Khalil
,
A.
Dainiak
,
D.
Musatov
,
A. M.
Raigorodskii
,
K.
Alfaro-Bittner
,
B.
Barzel
, and
S.
Boccaletti
, “
Growing scale-free simplices
,”
Commun. Phys.
4
,
1
9
(
2021
).
26.
O.
Bobrowski
and
D.
Krioukov
, “Random simplicial complexes: Models and phenomena,” in Higher-Order Systems (Springer, 2022), pp. 59–96.
27.
A.
Costa
and
M.
Farber
, “Random simplicial complexes,” in Configuration Spaces (Springer, 2016), pp. 129–153.
28.
T.-C.
Yen
, “
Construction of simplicial complexes with prescribed degree-size sequences
,”
Phys. Rev. E
104
,
L042303
(
2021
).
29.
S.
Majhi
,
M.
Perc
, and
D.
Ghosh
, “
Dynamics on higher-order networks: A review
,”
J. R. Soc. Interface
19
,
20220043
(
2022
).
30.
X.
Xue
,
W.
Li
,
Y.
Nie
,
X.
Lei
,
T.
Lin
, and
W.
Wang
, “
Cooperative epidemic spreading in simplicial complex
,”
Commun. Nonlinear Sci. Numer. Simul.
114
,
106671
(
2022
).
31.
Z.
Li
,
Z.
Deng
,
Z.
Han
,
K.
Alfaro-Bittner
,
B.
Barzel
, and
S.
Boccaletti
, “
Contagion in simplicial complexes
,”
Chaos, Solitons Fractals
152
,
111307
(
2021
).
32.
D.
Watts
and
S.
Strogatz
, “
Collective dynamics of small world networks
,”
Nature
393
,
440
442
(
1998
).
33.
R.
Guimerà
,
L.
Danon
,
A.
Diaz-Guilera
,
F.
Giralt
, and
A.
Arenas
, “
Self-similar community structure in a network of human interactions
,”
Phys. Rev. E
68
,
065103
(
2004
).
34.
R. A.
Rossi
and
N. K.
Ahmed
, “The network data repository with interactive graph analytics and visualization,” in Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI Press, 2015), pp. 4292–4293.
35.
J.
Schellenberger
,
J.
Park
,
T.
Conrad
, and
B.
Palsson
, “
BiGG: A biochemical genetic and genomic knowledgebase of large scale metabolic reconstructions
,”
BMC Bioinf.
11
,
213
(
2010
).
36.
D.
Shi
,
Z.
Chen
,
X.
Sun
,
Q.
Chen
,
C.
Ma
,
Y.
Lou
, and
G.
Chen
, “
Computing cliques and cavities in networks
,”
Commun. Phys.
4
,
1
7
(
2021
).
37.
P.
Shu
,
W.
Wang
,
M.
Tang
, and
Y.
Do
, “
Numerical identification of epidemic thresholds for susceptible-infected-recovered model on finite-size networks
,”
Chaos
25
,
063104
(
2015
).
38.
M.
Boguná
and
R.
Pastor-Satorras
, “
Epidemic spreading in correlated complex networks
,”
Phys. Rev. E
66
,
047104
(
2002
).
39.
R.
Grigoriev
,
M.
Cross
, and
H.
Schuster
, “
Pinning control of spatiotemporal chaos
,”
Phys. Rev. Lett.
79
,
2795
(
1997
).
40.
X.
Wang
and
G.
Chen
, “
Synchronization in small-world dynamical networks
,”
Int. J. Bifurcat. Chaos
12
,
187
192
(
2002
).
41.
X.
Wang
and
G.
Chen
, “
Pinning control of scale-free dynamical networks
,”
Phys. A
310
,
521
531
(
2002
).
42.
X.
Li
,
X.
Wang
, and
G.
Chen
, “
Pinning a complex dynamical network to its equilibrium
,”
IEEE Trans. Circuits Syst. I: Regul. Pap.
51
,
2074
2087
(
2004
).
43.
T.
Fan
,
L.
,
D.
Shi
, and
T.
Zhou
, “
Characterizing cycle structure in complex networks
,”
Commun. Phys.
4
,
272
(
2021
).
44.
X.-K.
Xu
,
K.-K.
Shang
, and
J.
Xiao
, “
Quantifying the effect of community structures for link prediction by constructing null models
,”
IEEE Access
8
,
89269
89280
(
2020
).
45.
H.
Hong
,
B. J.
Kim
,
M.
Choi
, and
H.
Park
, “
Factors that predict better synchronizability on complex networks
,”
Phys. Rev. E
69
,
067105
(
2004
).
46.
T.
Nishikawa
,
A. E.
Motter
,
Y.-C.
Lai
, and
F. C.
Hoppensteadt
, “
Heterogeneity in oscillator networks: Are smaller worlds easier to synchronize?
,”
Phys. Rev. Lett.
91
,
014101
(
2003
).
47.
F.
Comellas
and
S.
Gago
, “
Synchronizability of complex networks
,”
J. Phys. A: Math. Theor.
40
,
4483
(
2007
).
48.
D.
Lusseau
,
K.
Schneider
,
O.
Boisseau
,
P.
Haase
,
E.
Slooten
, and
S.
Dawson
, “
The bottlenose dolphin community of doubtful sound features a large proportion of long-lasting associations
,”
Behav. Ecol. Sociobiol.
54
,
396
405
(
2003
).
49.
M.
Girvan
and
M.
Newman
, “
Community structure in social and biological networks
,”
Proc. Natl. Acad. Sci. U. S. A.
99
,
7821
7826
(
2002
).
50.
W. W.
Zachary
, “
An information flow model for conflict and fission in small groups
,”
J. Anthropol. Res.
33
,
452
473
(
1977
).
51.
D. E.
Knuth
,
The Stanford GraphBase: A Platform for Combinatorial Computing
(
ACM Press
,
New York
,
1993
), Vol. 1.
52.
V.
Krebs
, see http://www.orgnet.com for “The Political Books Network.”
53.
J. H.
Michael
and
J. G.
Massey
, “
Modeling the communication network in a sawmill
,”
For. Prod. J.
47
,
25
(
1997
).
54.
M. E.
Newman
, “
Finding community structure in networks using the eigenvectors of matrices
,”
Phys. Rev. E
74
,
036104
(
2006
).
55.
A.
Lancichinetti
,
S.
Fortunato
, and
F.
Radicchi
, “
Benchmark graphs for testing community detection algorithms
,”
Phys. Rev. E
78
,
046110
(
2008
).
56.
M.
Newman
and
M.
Girvan
, “
Finding and evaluating community structure in networks
,”
Phys. Rev. E
69
,
026113
(
2004
).
57.
V.
Blondel
,
J.-L.
Guillaume
,
R.
Lambiotte
, and
E.
Lefebvre
, “
Fast unfolding of communities in large networks
,”
J. Stat. Mech. Theory Exp.
2008
,
P10008
(
2008
).
58.
P.
Holme
, “
Temporal network structures controlling disease spreading
,”
Phys. Rev. E
94
,
022305
(
2016
).
59.
X.
Ge
,
L.
Lili
, and
H.
Li
, “Epidemic spreading and immunization on assortative degree mixing networks,” in International Conference on Natural Computation (IEEE, 2014), pp. 1014–1019.
60.
K.
Zuev
,
O.
Eisenberg
, and
D.
Krioukov
, “
Exponential random simplicial complexes
,”
J. Phys. A: Math. Theor.
48
,
465002
(
2015
).

Supplementary Material

You do not currently have access to this content.