Modeling nerve cells can facilitate formulating hypotheses about their real behavior and improve understanding of their functioning. In this paper, we study a discrete neuron model introduced by Courbage et al. [Chaos 17, 043109 (2007)], where the originally piecewise linear function defining voltage dynamics is replaced by a cubic polynomial, with an additional parameter responsible for varying the slope. Showing that on a large subset of the multidimensional parameter space, the return map of the voltage dynamics is an expanding Lorenz map, we analyze both chaotic and periodic behavior of the system and describe the complexity of spiking patterns fired by a neuron. This is achieved by using and extending some results from the theory of Lorenz-like and expanding Lorenz mappings.

1.
L.
Lapicque
, “
Recherches quantitatives sur l’excitation électrique des nerfs traitée comme une polarisation
,”
J. Physiol. Pathol. Gen.
9
,
567
578
(
1907
).
2.
N.
Brunel
and
M. C.
van Rossum
, “
Lapicque’s 1907 paper: From frogs to integrate-and-fire
,”
Biol. Cybern.
97
,
337
339
(
2007
).
3.
A. L.
Hodgkin
and
A. F.
Huxley
, “
A quantitative description of membrane current and its application to conduction and excitation in nerve
,”
J. Physiol.
117
,
sp004764
(
1952
).
4.
R.
FitzHugh
, “
Impulses and physiological states in theoretical models of nerve membrane
,”
Biophys. J.
1
,
445
466
(
1961
).
5.
J.
Nagumo
,
S.
Arimoto
, and
S.
Yoshizawa
, “
An active pulse transmission line simulating nerve axon
,”
Proc. IRE
50
,
2061
2070
(
1962
).
6.
J. L.
Hindmarsh
and
R. M.
Rose
, “
A model of neuronal bursting using three coupled first order differential equations
,”
Proc. R. Soc. Lond. B.
221
,
87
102
(
1984
).
7.
C.
Morris
and
H.
Lecar
, “
Voltage oscillations in the barnacle giant muscle fiber
,”
Biophys. J.
35
,
193
213
(
1981
).
8.
R.
Brette
, “
Dynamics of one-dimensional spiking neuron models
,”
J. Math. Biol.
48
,
38
56
(
2004
).
9.
H.
Carrillo
and
F.
Hoppensteadt
, “
Unfolding an electronic integrate-and-fire circuit
,”
Biol. Cybern.
102
,
1
8
(
2010
).
10.
S.
Coombes
and
P.
Bresslof
, “
Mode locking and Arnold tongues in integrate-and-fire oscillators
,”
Phys. Rev. E
60
,
2086
2096
(
1999
).
11.
J. P.
Keener
,
F. C.
Hoppensteadt
, and
J.
Rinzel
, “
Integrate-and-fire models of nerve membrane response to oscillatory input
,”
SIAM J. Appl. Math.
41
,
503
517
(
1981
).
12.
R.
Brette
and
W.
Gerstner
, “
Adaptive exponential integrate-and-fire model as an effective description of neuronal activity
,”
J. Neurophysiol.
94
,
3637
3642
(
2005
).
13.
E. M.
Izhikevich
, “
Simple model of spiking neurons
,”
IEEE Trans. Neural Netw.
14
,
1569
1572
(
2003
).
14.
J.
Touboul
and
R.
Brette
, “
Spiking dynamics of bidimensional integrate-and-fire neurons
,”
IAM J. Appl. Dyn. Syst.
8
,
1462
1506
(
2009
).
15.
J. E.
Rubin
,
J.
Signerska-Rynkowska
,
J. D.
Touboul
, and
A.
Vidal
, “
Wild oscillations in a nonlinear neuron model with resets: (I) Bursting, spike-adding and chaos
,”
Discrete Contin. Dyn. Syst. - B
22
,
3967
4002
(
2017
).
16.
J. E.
Rubin
,
J.
Signerska-Rynkowska
,
J. D.
Touboul
, and
A.
Vidal
, “
Wild oscillations in a nonlinear neuron model with resets: (II) Mixed-mode oscillations
,”
Discrete Contin. Dyn. Syst. - B
22
,
4003
4039
(
2017
).
17.
B.
Ibarz
,
J. M.
Casado
, and
M. A. F.
Sanjuán
, “
Map-based models in neuronal dynamics
,”
Phys. Rep.
501
(
1–2
),
1
74
(
2001
).
18.
E. M.
Izhikevich
and
F.
Hoppensteadt
, “
Classification of bursting mappings
,”
Int. J. Bifurcat. Chaos
14
,
3847
3854
(
2004
).
19.
N. F.
Rulkov
, “
Regularization of synchronized chaotic bursts
,”
Phys. Rev. Lett.
86
,
183
186
(
2001
).
20.
D. R.
Chialvo
, “
Generic excitable dynamics on a two-dimensional map
,”
Chaos Solitons Fractals
5
(
3–4
),
461
479
(
1995
).
21.
M.
Courbage
,
V. I.
Nekorkin
, and
L. V.
Vdovin
, “
Chaotic oscillations in a map-based model of neural activity
,”
Chaos
17
,
043109
(
2007
).
22.
H.
Korn
and
P.
Faure
, “
Is there chaos in the brain? II. Experimental evidence and related models
,”
C. R. Biol.
326
,
787
840
(
2003
).
23.
J.
Jaquette
,
S.
Kedia
,
E.
Sander
, and
J. D.
Touboul
, “
Reliability and robustness of oscillations in some slow-fast chaotic systems
,”
Chaos
33
,
103135
(
2023
).
24.
N. F.
Rulkov
, “
Modelling of spiking-bursting neural behaviour using two-dimensional map
,”
Phys. Rev. E
65
,
041922
(
2002
).
25.
A. L.
Shilnikov
and
N. F.
Rulkov
, “
Subthreshold oscillations in a map-based neuron model
,”
Phys. Lett. A
328
,
177
184
(
2004
).
26.
F.
Llovera-Trujillo
,
J.
Signerska-Rynkowska
, and
P.
Bartłomiejczyk
, “
Periodic and chaotic dynamics in a map-based neuron model
,”
Math. Meth. Appl. Sci.
46
,
11906
11931
(
2023
).
27.
S.
Jelbart
and
C.
Kuehn
, “
Discrete geometric singular perturbation theory
,”
Discrete Contin. Dyn. Syst. Ser. A
43
(
1
),
57
120
(
2023
).
28.
P.
Pilarczyk
,
J.
Signerska-Rynkowska
, and
G.
Graff
, “
Topological-numerical analysis of a two-dimensional discrete neuron model
,”
Chaos
33
,
043110
(
2023
).
29.
R.
Smidtaite
and
M.
Ragulskis
, “
Finite-time divergence in Chialvo hyperneuron model of nilpotent matrices
,”
Chaos, Solitons Fractals
179
,
114482
(
2024
).
30.
M.
Courbage
and
V. I.
Nekorkin
, “
Map based models in neurodynamics
,”
Int. J. Bifurcat. Chaos
20
(
6
),
1631
1651
(
2010
).
31.
P.
Bartłomiejczyk
,
F.
Llovera-Trujillo
, and
J.
Signerska-Rynkowska
, “
Spike patterns and chaos in a map-based neuron model
,”
Int. J. Appl. Math. Comput. Sci.
33
,
395
408
(
2023
).
32.
R.
FitzHugh
, “
Mathematical models of the threshold phenomena in the nerve membrane
,”
Bull. Math. Biophys.
17
,
257
278
(
1955
).
33.
C.
Aguirre
,
D.
Campos
,
P.
Pascual
, and
E.
Serrano
, “Neuronal behaviour with sub-threshold oscillations and spiking/bursting activity using a piecewise linear two-dimensional map,” in Artificial Neural Networks: Biological Inspirations ICANN 2005 (Springer, Berlin, 2005), pp. 103–108.
34.
B.
Cazelles
,
M.
Courbage
, and
M.
Rabinovich
, “
Anti-phase regularization of coupled chaotic maps modelling bursting neurons
,”
Europhys. Lett.
56
,
504
(
2001
).
35.
O. V.
Maslennikov
and
V. I.
Nekorkin
, “
Dynamic boundary crisis in the Lorenz-type map
,”
Chaos
23
,
023129
(
2013
).
36.
O. V.
Maslennikov
,
V. I.
Nekorkin
, and
J.
Kurths
, “
Transient chaos in the Lorenz-type map with periodic forcing
,”
Chaos
28
(
3
),
033107
(
2018
).
37.
M.
Courbage
,
O. V.
Maslennikov
, and
V. I.
Nekorkin
, “
Synchronization in time-discrete model of two electrically coupled spike-bursting neurons
,”
Chaos Solitons Fractals
45
(
5
),
645
659
(
2012
).
38.
A.
Hess
,
L.
Yu
,
I.
Klein
,
M.
De Mazancourt
,
G.
Jebrak
,
H.
Mal
,
O.
Brugière
,
M.
Fournier
,
M.
Courbage
,
G.
Dauriat
, and
E.
Schouman-Clayes
, “
Neural mechanisms underlying breathing complexity
,”
PLoS One
8
(
10
),
e75740
(
2013
).
39.
L.
Yu
,
M.
De Mazancourt
, and
A.
Hess
, “
Functional connectivity and information flow of the respiratory neural network in chronic obstructive pulmonary disease
,”
Hum. Brain Mapp.
37
,
2736
2754
(
2016
).
40.
Y.
Yue
,
Y. J.
Liu
,
Y. L.
Song
,
Y.
Chen
, and
L. C.
Yu
, “
Information capacity and transmission in a Courbage-Nekorkin-Vdovin map-based neuron model
,”
Chin. Phys. Lett.
34
,
048701
(
2017
).
41.
O. V.
Maslennikov
and
V. I.
Nekorkin
, “
Discrete model of the olivo-cerebellar system: structure and dynamics
,”
Radiophys. Quantum El.
55
(
3
),
198
214
(
2012
).
42.
W.
Geller
and
M.
Misiurewicz
, “
Farey-Lorenz permutations for interval maps
,”
Int. J. Bifurcat. Chaos
28
,
1850021
(
2018
).
43.
F.
Rhodes
and
C. L.
Thompson
, “
Rotation numbers for monotone functions on the circle
,”
J. Lond. Math. Soc.
34
(
2
),
360
368
(
1986
).
44.
A.
Katok
and
B.
Hasselblatt
, “Introduction to the modern theory of dynamical systems,” in Encyclopedia of Mathematics and its Applications (Cambridge University Press, Cambridge, 1995).
45.
L.
Alsedà
,
J.
Llibre
,
M.
Misiurewicz
, and
C.
Tresser
, “
Periods and entropy for Lorenz-like maps
,”
Ann. Inst. Fourier (Grenoble)
39
,
929
952
(
1989
).
46.
A.
Granados
,
L.
Alsedà
, and
M.
Krupa
, “
The period adding and incrementing bifurcations: From rotation theory to applications
,”
SIAM Rev.
59
(
2
),
225
292
(
2017
).
47.
A.
Boyarsky
and
P.
Góra
, “Laws of chaos. Invariant measures and dynamical systems in one dimension,” in Probability and its Applications (Birkhäuser Boston, Inc., Boston, MA, 1997).
48.
H.
Bruin
,
Topological and Ergodic Theory of Symbolic Dynamics
(
American Mathematical Society
,
2023
).
49.
S.
Newhouse
,
J.
Palis
, and
F.
Takens
, “
Bifurcations and stability of families of diffeomorphisms
,”
Inst. Hautes Études Sci. Publ. Math.
57
,
5
71
(
1983
).
50.
V. I.
Arnold
, “
Cardiac arrhythmias and circle mappings
,”
Chaos
1
,
20
24
(
1991
).
51.
L.
Glass
, “
Synchronization and rhythmic processes in physiology
,”
Nature
410
,
277
284
(
2001
).
52.
D.
Reyner-Parra
and
G.
Huguet
, “
Phase-locking patterns underlying effective communication in exact firing rate models of neural networks
,”
PLoS Comput. Biol.
18
,
e1009342
(
2022
).
53.
T.
Gedeon
and
M.
Holzer
, “
Phase locking in integrate-and-fire models with refractory periods and modulation
,”
J. Math. Biol.
49
,
577
603
(
2004
).
54.
P.
Kasprzak
,
A.
Nawrocki
, and
J.
Signerska-Rynkowska
, “
Integrate-and-fire models with an almost periodic input function
,”
J. Differ. Equ.
264
,
2495
2537
(
2018
).
55.
K.
Pakdaman
, “
Periodically forced leaky integrate-and-fire model
,”
Phys. Rev. E Stat. Nonlin. Soft Matter Phys.
63
,
041907
(
2001
).
56.
G. A.
Gottwald
and
I.
Melbourne
, “The 0-1 test for chaos: A review,” in Chaos Detection and Predictability. Lecture Notes in Physics, edited by C. Skokos, G. Gottwald, and J. Laskar (Springer, Berlin, 2016), Vol. 915.
57.
P.
Bartłomiejczyk
,
F.
Llovera Trujillo
, and
J.
Signerska-Rynkowska
, FUPOlibrary, https://www.mathworks.com/matlabcentral/fileexchange/135937-fupolibrary, MATLAB Central File Exchange, 2023. Retrieved September 27, 2023.
58.
P.
Bartłomiejczyk
,
F.
Llovera Trujillo
, and
J.
Signerska-Rynkowska
, FUPOlibrary, https://github.com/bartlomiejczyk/FUPOlibrary, GitHub repository, 2023. Retrieved September 27, 2023.
59.
A.
Lempel
and
J.
Ziv
, “
On the complexity of finite sequences
,”
IEEE Trans. Inf. Theory
22
(
1
),
75
81
(
1976
).
60.
G. S.
Bortolotto
,
R. V.
Stenzinger
, and
M. H. R.
Tragtenberg
, “
Electromagnetic induction on a map-based action potential model
,”
Nonlinear Dyn.
95
,
433
444
(
2019
).
61.
A.
Kameyama
, “
Topological transitivity and strong transitivity
,”
Acta Math. Univ. Comenianae (N.S.)
71
(
2
),
139
145
(
2002
), see http://www.iam.fmph.uniba.sk/amuc/_vol-71/_no_2/_kameyama/kameyama.pdf.
62.
M.
Misiurewicz
, “
Rotation intervals for a class of maps of the real line into itself
,”
Ergod. Theory Dyn. Syst.
6
(
1
),
117
132
(
1986
).
63.
P.
Oprocha
,
P.
Potorski
, and
P.
Raith
, “
Mixing properties in expanding Lorenz maps
,”
Adv. Math.
343
,
712
755
(
2019
).
64.
A.
Peris
, “
Transitivity, dense orbit and discontinuous functions
,”
Bull. Belg. Math. Soc. Simon Stevin
6
,
391
394
(
1999
).
You do not currently have access to this content.