During sleep, sporadically, it is possible to find neural patterns of activity in areas of the avian brain that are activated during the generation of the song. It has recently been found that in the vocal muscles of a sleeping bird, it is possible to detect activity patterns during these silent replays. In this work, we employ a dynamical systems model for song production in suboscine birds in order to translate the vocal muscles activity during sleep into synthetic songs. Besides allowing us to translate muscle activity into behavior, we argue that this approach poses the biomechanics as a unique window into the avian brain, with biophysical models as its probe.
REFERENCES
1.
A. S.
Dave
and D.
Margoliash
, “Song replay during sleep and computational rules for sensorimotor vocal learning
,” Science
290
, 812
–816
(2000
). 2.
M.
Wilson
and B.
McNaughton
, “Reactivation of hippocampal ensemble memories during sleep
,” Science
265
, 676
–679
(1994
). 3.
Z.
Nádasdy
, H.
Hirase
, A.
Czurkó
, J.
Csicsvari
, and G.
Buzsáki
, “Replay and time compression of recurring spike sequences in the hippocampus
,” J. Neurosci.
19
, 9497
–9507
(1999
). 4.
M. S.
Brainard
and A. J.
Doupe
, “What songbirds teach us about learning
,” Nature
417
, 351
–358
(2002
). 5.
A. J.
Doupe
and P. K.
Kuhl
, “Birdsong and human speech: Common themes and mechanisms
,” Annu. Rev. Neurosci.
22
, 567–631 (1999
).6.
B. K.
Young
, G. B.
Mindlin
, E.
Arneodo
, and F.
Goller
, “Adult zebra finches rehearse highly variable song patterns during sleep
,” PeerJ
5
, e4052
(2017
).7.
A.
Bush
, J. F.
Döppler
, F.
Goller
, and G. B.
Mindlin
, “Syringeal EMGs and synthetic stimuli reveal a switch-like activation of the songbird’s vocal motor program
,” Proc. Natl. Acad. Sci. U.S.A.
115
, 8436
–8441
(2018
). 8.
A.
Amador
, Y. S.
Perl
, G. B.
Mindlin
, and D.
Margoliash
, “Elemental gesture dynamics are encoded by song premotor cortical neurons
,” Nature
495
, 59–64 (2013
).9.
G. B.
Mindlin
, “Nonlinear dynamics in the study of birdsong
,” J. Nonlinear Sci.
27
, 092101
(2017
). 10.
A.
Amador
and G. B.
Mindlin
, “Synthetic birdsongs as a tool to induce, and listen to, replay activity in sleeping birds
,” Front. Neurosci.
15
, 1
–13
(2021
). 11.
J. F.
Döppler
, M.
Peltier
, A.
Amador
, F.
Goller
, and G. B.
Mindlin
, “Replay of innate vocal patterns during night sleep in suboscines
,” Proc. R. Soc. B
288
, 1–9 (2021
).12.
E. D.
Jarvis
et al, “Whole-genome analyses resolve early branches in the tree of life of modern birds
,” Science
346
, 1320
–1331
(2014
). 13.
D. E.
Kroodsma
and M.
Konishi
, “A suboscine bird (eastern phoebe, Sayornis phoebe) develops normal song without auditory feedback
,” Anim. Behav.
42
, 477
–487
(1991
). 14.
J. M.
Touchton
, N.
Seddon
, and J. A.
Tobias
, “Captive rearing experiments confirm song development without learning in a Tracheophone Suboscine bird
,” PLoS One
9
, e95746
(2014
). 15.
P.
Orban
et al, “Sleep after spatial learning promotes covert reorganization of brain activity
,” Proc. Natl. Acad. Sci. U.S.A.
103
, 7124
–7129
(2006
). 16.
M. J.
Eckert
, B. L.
McNaughton
, and M.
Tatsuno
, “Neural ensemble reactivation in rapid eye movement and slow-wave sleep coordinate with muscle activity to promote rapid motor skill learning
,” Philos. Trans. R. Soc. B
375
, 20190655
(2020
). 17.
de Lima
, J. L. R.
., “A putative RA-like region in the brain of the scale-backed antbird, Willisornis poecilinotus (Furnariides, Suboscines, Passeriformes, Thamnophilidae)
,” Genet. Mol. Biol.
38
, 249
–254
(2015
). 18.
W.
Liu
, K.
Wada
, E. D.
Jarvis
, and F.
Nottebohm
, “Rudimentary substrates for vocal learning in a suboscine
,” Nat. Commun.
4
, 2082
(2013
). 19.
J. F.
Döppler
, A.
Amador
, F.
Goller
, and G. B.
Mindlin
, “Dynamics behind rough sounds in the song of the Pitangus sulphuratus
,” Phys. Rev. E
102
, 062415
(2020
). 20.
F.
Goller
and O. N.
Larsen
, “A new mechanism of sound generation in songbirds
,” Proc. Natl. Acad. Sci. U.S.A.
94
, 14787
–14791
(1997
). 21.
T. J.
Gardner
, G.
Cecchi
, M.
Magnasco
, R.
Laje
, and G. B.
Mindlin
, “Simple motor gestures for birdsongs
,” Phys. Rev. Lett.
87
, 208101
(2001
). 22.
A.
Amador
, F.
Goller
, and G. B.
Mindlin
, “Frequency modulation during song in a suboscine does not require vocal muscles
,” J. Neurophysiol.
99
, 2383
–2389
(2008
). 23.
P. L.
Ames
, The Morphology of the Syrinx in Passerine Birds
(Peabody Museum of Natural History, Yale University
, 1971
).24.
J. D.
Sitt
, E. M.
Arneodo
, F.
Goller
, and G. B.
Mindlin
, “Physiologically driven avian vocal synthesizer
,” Phys. Rev. E
81
, 031927
(2010
). 25.
G. B.
Mindlin
, T. J.
Gardner
, F.
Goller
, and R. A.
Suthers
, “Experimental support for a model of birdsong production
,” Phys. Rev. E
68
, 041908
(2003
). 26.
Y. S.
Perl
, E. M.
Arneodo
, A.
Amador
, and G. B.
Mindlin
, “Nonlinear dynamics and the synthesis of zebra finch song
,” Int. J. Bifurc. Chaos
22
, 1250235
(2012
). 27.
T.
Riede
, R. A.
Suthers
, N. H.
Fletcher
, and W. E.
Blevins
, “Songbirds tune their vocal tract to the fundamental frequency of their song
,” Proc. Natl. Acad. Sci. U.S.A.
103
, 5543
–5548
(2006
). 28.
N. H.
Fletcher
, T.
Riede
, and R. A.
Suthers
, “Model for vocalization by a bird with distensible vocal cavity and open beak
,” J. Acoust. Soc. Am.
119
, 1005
(2006
). 29.
Y. S.
Perl
, E. M.
Arneodo
, A.
Amador
, F.
Goller
, and G. B.
Mindlin
, “Reconstruction of physiological instructions from zebra finch song
,” Phys. Rev. E
84
, 051909
(2011
). 30.
G.
Uribarri
, M. J.
Rodríguez-Cajarville
, P. L.
Tubaro
, F.
Goller
, and G. B.
Mindlin
, “Unusual avian vocal mechanism facilitates encoding of body size
,” Phys. Rev. Lett.
124
, 098101
(2020
). 31.
S.
Derégnaucourt
, P. P.
Mitra
, O.
Fehér
, C.
Pytte
, and O.
Tchernichovski
, “How sleep affects the developmental learning of bird song
,” Nature
433
, 710
–716
(2005
). 32.
D.
Margoliash
and M. F.
Schmidt
, “Sleep, off-line processing, and vocal learning
,” Brain Lang.
115
, 45
–58
(2010
). 33.
J. F.
Döppler
, A.
Bush
, F.
Goller
, and G. B.
Mindlin
, “From electromyographic activity to frequency modulation in zebra finch song
,” J. Comp. Physiol., A
204
, 204
–217
(2018
).34.
F.
Goller
and R. A.
Suthers
, “Role of syringeal muscles in gating airflow and sound production in singing brown thrashers
,” J. Neurophysiol.
75
, 867
–876
(1996
). © 2024 Author(s). Published under an exclusive license by AIP Publishing.
2024
Author(s)
You do not currently have access to this content.