Built upon the shoulders of graph theory, the field of complex networks has become a central tool for studying real systems across various fields of research. Represented as graphs, different systems can be studied using the same analysis methods, which allows for their comparison. Here, we challenge the widespread idea that graph theory is a universal analysis tool, uniformly applicable to any kind of network data. Instead, we show that many classical graph metrics—including degree, clustering coefficient, and geodesic distance—arise from a common hidden propagation model: the discrete cascade. From this perspective, graph metrics are no longer regarded as combinatorial measures of the graph but as spatiotemporal properties of the network dynamics unfolded at different temporal scales. Once graph theory is seen as a model-based (and not a purely data-driven) analysis tool, we can freely or intentionally replace the discrete cascade by other canonical propagation models and define new network metrics. This opens the opportunity to design—explicitly and transparently—dedicated analyses for different types of real networks by choosing a propagation model that matches their individual constraints. In this way, we take stand that network topology cannot always be abstracted independently from network dynamics but shall be jointly studied, which is key for the interpretability of the analyses. The model-based perspective here proposed serves to integrate into a common context both the classical graph analysis and the more recent network metrics defined in the literature which were, directly or indirectly, inspired by propagation phenomena on networks.

1.
S. P.
Borgatti
,
A.
Mehra
,
D. J.
Brass
, and
G.
Labianca
, “
Network analysis in the social sciences
,”
Science
323
,
892
895
(
2009
).
2.
I.
Kiss
,
J. C.
Miller
, and
P. L.
Simon
, Mathematics of Epidemics on Networks, Interdisciplinary Applied Mathematics (Springer, 2017), Vol. 46.
3.
M.
Kaiser
, “
Brain architecture: A design for natural computation
,”
Philos. Trans. R. Soc. A
365
,
3033
3045
(
2007
).
4.
G.
Zamora-López
,
C. S.
Zhou
, and
J.
Kurths
, “
Exploring brain function from anatomical connectivity
,”
Front. Neurosci.
5
,
83
(
2011
).
5.
A.
Baronchelli
,
R.
Ferrer i Cancho
,
R.
Pastor-Satorras
,
N.
Chater
, and
M. H.
Christiansen
, “
Networks in cognitive science
,”
Trends Cognit. Sci.
17
(
7
),
348
360
(
2013
).
6.
D.
Papo
,
M.
Zanin
,
J. A.
Pineda-Pardo
,
S.
Boccaletti
, and
J. M.
Buldú
, “
Functional brain networks: Great expectations, hard times and the big leap forward
,”
Philos. Trans. R. Soc. B
369
,
20130525
(
2014
).
7.
H.
Jeong
,
B.
Tombor
,
R.
Albert
,
Z. N.
Oltvai
, and
A. L.
Barabási
, “
The large-scale organization of metabolic networks
,”
Nature
407
,
651
654
(
2000
).
8.
Analysis of Biological Networks, edited by B. H. Junker and F. Schreiber (Wiley-Interscience, Hoboken, NJ, 2008).
9.
M.
Wickramasinghe
and
I. Z.
Kiss
, “
Spatially organized dynamical states in chemical oscillator networks: Synchronization, dynamical differentiation, and chimera patterns
,”
PLoS One
8
(
11
),
1862
1867
(
2013
).
10.
C.
Bick
,
M.
Sebek
, and
I. Z.
Kiss
, “
Robust weak chimeras in oscillator networks with delayed linear and quadratic interactions
,”
Phys. Rev. Lett.
119
,
168301
(
2017
).
11.
A.
Broder
,
R.
Kumar
,
F.
Maghoul
,
P.
Raghavan
,
S.
Rajagopalan
,
R.
Stata
,
A.
Tomkins
, and
J.
Wiener
, “
Graph structure in the web
,”
Comput. Netw.
33
,
309
320
(
2000
).
12.
A.
Arenas
,
A.
Díaz-Guilera
,
J.
Kurths
,
Y.
Moreno
, and
C. S.
Zhou
, “
Synchronization in complex networks
,”
Phys. Rep.
469
,
93
153
(
2008
).
13.
A.
Barrat
,
M.
Barthélemy
, and
A.
Vespignani
,
Dynamical Processes on Complex Networks
(
Cambridge University Press
,
2008
).
14.
N.
Masuda
,
M. A.
Porter
, and
R.
Lambiotte
, “
Random walks and diffusion on networks
,”
Phys. Rep.
716–717
,
1
58
(
2017
).
15.
P.
Ji
,
J.
Ye
,
Y.
Mu
,
W.
Lin
,
Y.
Tian
,
C.
Hens
,
M.
Perc
,
Y.
Tang
,
J.
Sun
, and
J.
Kurths
, “
Signal propagation in complex networks
,”
Phys. Rep.
1017
,
1
96
(
2023
).
16.
S.-J.
Yang
, “
Exploring complex networks by walking on them
,”
Phys. Rev. E
71
,
016107
(
2005
).
17.
A.
Arenas
,
A.
Díaz-Guilera
, and
C.
Pérez-Vicente
, “
Synchronization reveals topological scales in complex networks
,”
Phys. Rev. Lett.
96
,
114102
(
2006
).
18.
M.
Rosvall
and
C. T.
Bergstrom
, “
Maps of random walks on complex networks reveal community structure
,”
Proc. Natl. Acad. Sci. U.S.A.
105
(
4
),
1118
1123
(
2008
).
19.
M.
Boguñá
,
D.
Krioukov
, and
K. C.
Claffy
, “
Navigability of complex networks
,”
Nat. Phys.
5
,
74
80
(
2009
).
20.
J.-C.
Delvenne
,
S. N.
Yaliraki
, and
M.
Barahona
, “
Stability of graph communities across time scales
,”
Proc. Natl. Acad. Sci. U.S.A.
107
(
29
),
12755
12760
(
2010
).
21.
M.
Gilson
,
R.
Moreno-Bote
,
A.
Ponce-Alvarez
,
P.
Ritter
, and
G.
Deco
, “
Estimation of directed effective connectivity from fMRI functional connectivity hints at asymmetries of cortical connectome
,”
PLoS Comput. Biol.
12
(
3
),
e1004762
(
2016
).
22.
A.
Arnaudon
,
R. L.
Peach
, and
M.
Barahona
, “
Scale-dependent measure of network centrality from diffusion dynamics
,”
Phys. Rev. Res.
2
,
033104
(
2020
).
23.
X.
Wu
,
C. S.
Zhou
,
G.
Chen
, and
J.-A.
Lu
, “
Detecting the topologies of complex networks with stochastic perturbations
,”
Chaos
21
,
043129
(
2011
).
24.
E.
Bianco-Martinez
,
N.
Rubido
,
C. G.
Antonopoulos
, and
M. S.
Baptista
, “
Successful network inference from time-series data using mutual information rate
,”
Chaos
26
,
043102
(
2016
).
25.
H.-T.
Wai
,
A.
Saglione
,
B.
Barzel
, and
A.
Leshem
, “
Joint network topology and dynamics recovery from perturbed stationary points
,”
IEEE Trans. Signal Process.
67
(
17
),
4582
4596
(
2019
).
26.
M.
Asilani
,
B. R.
da Cunha
,
E.
Estrada
, and
J. P.
Gleeson
, “
Dynamics impose limits to detectability of network structure
,”
New J. Phys.
22
,
063037
(
2020
).
27.
L.
Katz
, “
A new status index derived from sociometric analysis
,”
Psychometrika
18
(
1
),
39
43
(
1953
).
28.
L.
Page
,
S.
Brin
,
R.
Motwani
, and
T.
Winograd
, “The PageRank citation ranking: Bring order to the web,” Technical report (Stanford University, 1998).
29.
E.
Estrada
and
N.
Hatano
, “
Communicability in complex networks
,”
Phys. Rev. E
77
,
036111
(
2008
).
30.
M.
Gilson
,
N. E.
Kouvaris
,
G.
Deco
, and
G.
Zamora-López
, “
Framework based on communicability and flow to analyze complex network dynamics
,”
Phys. Rev. E
97
,
052301
(
2018
).
31.
M.
Gilson
,
N. E.
Kouvaris
,
G.
Deco
,
J.-F.
Mangin
,
C.
Poupon
,
S.
Lefranc
,
D.
Rivière
, and
G.
Zamora-López
, “
Network analysis of whole-brain fMRI dynamics: A new framework based on dynamic communicability
,”
NeuroImage
201
,
116007
(
2019
).
32.
P.
Vilegas
,
T.
Gili
,
G.
Caldarelli
, and
A.
Gabrielli
, “
Laplacian renormalization group for heterogeneous networks
,”
Nat. Phys.
19
,
445
450
(
2023
).
33.
M.
Molloy
and
B.
Reed
, “
A critical point for random graphs with given degree sequence
,”
Random Struct. Algorithms
6
(
2–3
),
161
179
(
1995
).
34.
M. E. J.
Newman
,
S. H.
Strogatz
, and
D. J.
Watts
, “
Random graphs with arbitrary degree distributions and their applications
,”
Phys. Rev. E
64
,
026118
(
1972
).
35.
M. D.
Humphries
,
K.
Gurney
, and
T. J.
Prescott
, “
Network ‘small-world-ness’: A quantitative method for determining canonical network equivalence
,”
PLoS One
3
,
e0002051
(
2008
).
36.
M.
Barthélemy
, “Random geometric graphs,” in Morphogenesis of Spatial Networks, Lecture Notes in Morphogenesis (Springer, 2018).
37.
F.
Váša
and
B.
Mišić
, “
Null models in network neuroscience
,”
Nat. Rev. Neurosci.
23
,
493
504
(
2022
).
38.
G.
Zamora-López
and
R.
Brasselet
, “
Sizing complex networks
,”
Commun. Phys.
2
,
144
(
2019
).
39.
G.
Zamora-López
,
C. S.
Zhou
, and
J.
Kurths
, “
Cortical hubs form a module for multisensory integration on top of the hierarchy of cortical networks
,”
Front. Neuroinf.
4
,
1
(
2010
).
40.
N. E.
Friedkin
, “
Theoretical foundations for centrality measures
,”
Am. J. Sociol.
96
,
1478
1504
(
1991
).
41.
S. P.
Borgatti
, “
Centrality and network flow
,”
Social Networks
27
,
55
71
(
2005
).
42.
G.
Tononi
,
O.
Sporns
, and
G. M.
Edelman
, “
A measure for brain complexity: Relating functional segregation and integration in the nervous system
,”
Proc. Natl. Acad. Sci. U.S.A.
91
,
5033
5037
(
1994
).
43.
R. F.
Galán
, “
On how network architecture determines the dominant patterns of spontaneous neural activity
,”
PLoS One
3
(
5
),
e2148
(
2008
).
44.
G.
Zamora-López
,
Y.
Chen
,
G.
Deco
,
M. L.
Kringelbach
, and
C. S.
Zhou
, “
Functional complexity emerging from anatomical constraints in the brain: The significance of network modularity and rich-clubs
,”
Sci. Rep.
6
,
38424
(
2016
).
45.
K. J.
Sharkey
, “
A control analysis on Katz centrality
,”
Sci. Rep.
7
,
17247
(
2017
).
46.
P.
Pons
and
M.
Latapy
, “
Computing communities in large networks using random walks
,”
J. Graph Algorithms
10
,
191
(
2006
).
47.
C.
Piccardi
, “
Finding and testing network communities by lumped Markov chains
,”
PLoS One
6
(
11
),
e27028
(
2011
).
48.
M. T.
Schaub
,
R.
Lambiotte
, and
M.
Barahona
, “
Encoding dynamics for multiscale community detection: Markov time sweeping for the map equation
,”
Phys. Rev. E
86
,
026112
(
2012
).
49.
M. E. J.
Newman
, “
A measure of betweenness centrality based on random walks
,”
Social Networks
27
,
39
54
(
2005
).
50.
H.
Zhou
, “
Network landscape from a Brownian particle’s perspective
,”
Phys. Rev. E
67
,
041908
(
2003
).
51.
H.
Zhou
, “
Distance, dissimilarity index, and network community structure
,”
Phys. Rev. E
67
,
061901
(
2003
).
52.
H.
Zhou
and
R.
Lipowsky
, “Network Brownian motion: A new method to measure vertex-vertex proximity and to identify communities and subcommunities,” in Computational Science-ICCS 2004: 4th International Conference Kraków, Poland (Springer, Berlin, 2004), Vol. Part III, 4.
53.
R. I.
Kondor
and
J.
Lafferty
, “Diffusion kernels on graphs and other discrete structures,” in Proceedings of the 19th International Conference on Machine Learning (Morgan Kaufmann Publishers, Inc., 2002), Vol. 2002, pp. 315–322.
54.
J.
Zhang
,
C. S.
Zhou
,
X.
Wu
, and
M.
Small
, “
Mapping from structure to dynamics: A unified view of dynamical processes on networks
,”
Phys. Rev. E
82
,
026116
(
2010
).
55.
J.
Zhang
,
X.-K.
Xu
,
P.
Li
,
K.
Zhang
, and
M.
Small
, “
Node importance for dynamical process on networks: A multiscale characterization
,”
Chaos
21
,
016107
(
2011
).
56.
J.
Zhang
,
K.
Zhang
,
X.-K.
Xu
,
C. K.
Tse
, and
M.
Small
, “
Seeding the kernels in graphs: Toward multi-resolution community analysis
,”
New J. Phys.
11
,
113003
(
2009
).
57.
E.
Estrada
,
N.
Hatano
, and
M.
Benzi
, “
The physics of communicability in complex networks
,”
Phys. Rep.
514
,
89
119
(
2012
).
58.
X.-Q.
Cheng
and
H.-W.
She
, “
Uncovering the community structure associated with the diffusion dynamics on networks
,”
J. Stat. Mech.
2010
(
4
),
P04024
(
2010
).
59.
R.
Lambiotte
,
J.-C.
Delvenne
, and
M.
Barahona
, “
Random walks, Markov processes and the multiscale modular organization of complex networks
,”
IEEE Trans. Netw. Sci.
1
(
2
),
76
90
(
2014
).
60.
R.
Panda
,
A.
López-González
,
M.
Gilson
,
O.
Gosseries
,
A.
Thibaut
,
G.
Frasso
,
B.
Cecconi
,
A.
Scrichs
,
G.
Deco
,
S.
Laureys
,
G.
Zamora-López
, and
J.
Annen
, “
Whole-brain analyses indicate the impairment of posterior integration and thalamo-frontotemporal broadcasting in disorders of consciousness
,”
Hum. Brain Mapp.
44
(
11
),
4352
4371
(
2023
).
61.
J.
Gómez-Gardeñes
and
V.
Latora
, “
Entropy rate of diffusion processes on complex networks
,”
Phys. Rev. E
78
,
065102(R)
(
2008
).
62.
C.
Hens
,
U.
Harush
,
S.
Haber
,
R.
Cohen
, and
B.
Barzel
, “
Spatiotemporal signal propagation in complex networks
,”
Nat. Phys.
15
,
403
412
(
2019
).
63.
B.
Barzel
,
Y.-Y.
Liu
, and
A.-L.
Barabási
, “
Constructing minimal models for complex system dynamics
,”
Nat. Commun.
6
,
7186
(
2015
).
64.
U.
Harush
and
B.
Barzel
, “
Dynamic patterns of information flow in complex networks
,”
Nat. Commun.
8
,
2181
(
2017
).
65.
X.
Bao
,
Q.
Hu
,
P.
Ji
,
W.
Lin
,
J.
Kurths
, and
J.
Nagler
, “
Impact of basic network motifs on the collective response to perturbations
,”
Nat. Commun.
13
,
5301
(
2022
).

Supplementary Material

You do not currently have access to this content.