The complexity–entropy curve (CEC) is a valuable tool for characterizing the structure of time series and finds broad application across various research fields. Despite its widespread usage, the original permutation complexity–entropy curve (PCEC), which is founded on permutation entropy (PE), exhibits a notable limitation: its inability to take the means and amplitudes of time series into considerations. This oversight can lead to inaccuracies in differentiating time series. In this paper, drawing inspiration from dispersion entropy (DE), we propose the dispersion complexity–entropy curve (DCEC) to enhance the capability of CEC in uncovering the concealed structures within nonlinear time series. Our approach initiates with simulated data including the logistic map, color noises, and various chaotic systems. The outcomes of our simulated experiments consistently showcase the effectiveness of DCEC in distinguishing nonlinear time series with diverse characteristics. Furthermore, we extend the application of DCEC to real-world data, thereby asserting its practical utility. A novel approach is proposed, wherein DCEC-based feature extraction is combined with multivariate support vector machine for the diagnosis of various types of bearing faults. This combination achieved a high accuracy rate in our experiments. Additionally, we employ DCEC to assess stock indices from different countries and periods, thereby facilitating an analysis of the complexity inherent in financial markets. Our findings reveal significant insights into the dynamic regularities and distinct structures of these indices, offering a novel perspective for analyzing financial time series. Collectively, these applications underscore the potential of DCEC as an effective tool for the nonlinear time series analysis.

1.
A. N.
Kolmogorov
, “
Three approaches to the quantitative definition of information
,”
Int. J. Comput. Math.
2
,
157
168
(
1968
).
2.
B. B.
Mandelbrot
,
The Fractal Geometry of Nature
(
WH Freeman New York
,
1982
), Vol. 1.
3.
A. M.
Lyapunov
, “
The general problem of the stability of motion
,”
Int. J. Control
55
,
531
534
(
1992
).
4.
M.
Perc
, “
Nonlinear time series analysis of the human electrocardiogram
,”
Eur. J. Phys.
26
,
757
(
2005
).
5.
H.
Verdejo
,
W.
Kliemann
, and
C.
Becker
, “
A stochastic methodology to adjust controllers based on moments Lyapunov exponents: Application to power systems
,”
Int. J. Electr. Power Energy Syst.
93
,
15
29
(
2017
).
6.
Y.
Zhang
,
S.
Quan
, and
G.
Liu
, “
Fatigue damage evaluation of metallic components based on the maximum Lyapunov exponent of modified Duffing system
,”
Results Phys.
25
,
104252
(
2021
).
7.
D.
Mayor
,
T.
Steffert
,
G.
Datseris
,
A.
Firth
,
D.
Panday
,
H.
Kandel
, and
D.
Banks
, “
Complexity and entropy in physiological signals (ceps): Resonance breathing rate assessed using measures of fractal dimension, heart rate asymmetry and permutation entropy
,”
Entropy
25
,
301
(
2023
).
8.
F.
Ma
,
X.
Luo
, and
P.
Wang
, “
Stochastic growth tree networks with an identical fractal dimension: Construction and mean hitting time for random walks
,”
Chaos
32
,
063123
(
2022
).
9.
F.
Benatti
, “
Quantum algorithmic complexities and entropy
,”
Open Syst. Inf. Dyn.
16
,
1
28
(
2009
).
10.
C. E.
Shannon
, “
A mathematical theory of communication
,”
Bell Labs Tech. J.
27
,
623
656
(
1948
).
11.
C.
Bandt
and
B.
Pompe
, “
Permutation entropy: A natural complexity measure for time series
,”
Phys. Rev. Lett.
88
,
174102
(
2002
).
12.
Q.
Li
and
F.
Zuntao
, “
Permutation entropy and statistical complexity quantifier of nonstationarity effect in the vertical velocity records
,”
Phys. Rev. E
89
,
012905
(
2014
).
13.
C.
Bian
,
C.
Qin
,
Q.
Ma
, and
Q.
Shen
, “
Modified permutation-entropy analysis of heartbeat dynamics
,”
Phys. Rev. E
85
,
021906
(
2012
).
14.
B.
Fadlallah
,
B.
Chen
,
A.
Keil
, and
J.
Príncipe
, “
Weighted-permutation entropy: A complexity measure for time series incorporating amplitude information
,”
Phys. Rev. E
87
,
022911
(
2013
).
15.
C.
Bandt
, “
A new kind of permutation entropy used to classify sleep stages from invisible EEG microstructure
,”
Entropy
19
,
197
(
2017
).
16.
O.
Rosso
,
H.
Larrondo
,
M.
Martin
,
A.
Plastino
, and
M. A.
Fuentes
, “
Distinguishing noise from chaos
,”
Phys. Rev. Lett.
99
,
154102
(
2007
).
17.
M.
Martin
,
A.
Plastino
, and
O.
Rosso
, “
Statistical complexity and disequilibrium
,”
Phys. Lett. A
311
,
126
132
(
2003
).
18.
A.
Rényi
, “On measures of entropy and information,” in Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability (University of California Press, 1961).
19.
C.
Tsallis
, “
Possible generalization of Boltzmann-Gibbs statistics
,”
J. Stat. Phys.
52
,
479
487
(
1988
).
20.
R. G.
Baraniuk
,
P.
Flandrin
,
A. J. E. M.
Janssen
, and
O. J. J.
Michel
, “
Measuring time-frequency information content using the Rényi entropies
,”
IEEE Trans. Inf. Theory
47
,
1391
1409
(
2001
).
21.
M.
Portesi
and
A.
Plastino
, “
Generalized entropy as a measure of quantum uncertainty
,”
Physica A
225
,
412
430
(
1996
).
22.
R.
Islam
,
R.
Ma
,
P. M.
Preiss
,
M.
Eric Tai
,
A.
Lukin
,
M.
Rispoli
, and
M.
Greiner
, “
Measuring entanglement entropy in a quantum many-body system
,”
Nature
528
,
77
83
(
2015
).
23.
P. K.
Sahoo
and
G.
Arora
, “
A thresholding method based on two-dimensional Renyi’s entropy
,”
Pattern Recognit.
37
,
1149
1161
(
2004
).
24.
H. V.
Ribeiro
,
M.
Jauregui
,
L.
Zunino
, and
E. K.
Lenzi
, “
Characterizing time series via complexity-entropy curves
,”
Phys. Rev. E
95
,
062106
(
2017
).
25.
M.
Jauregui
,
L.
Zunino
,
E. K.
Lenzi
,
R. S.
Mendes
, and
H. V.
Ribeiro
, “
Characterization of time series via Rényi complexity–entropy curves
,”
Physica A
498
,
74
85
(
2018
).
26.
X.
Mao
,
P.
Shang
,
J.
Wang
, and
Y.
Ma
, “
Characterizing time series by extended complexity-entropy curves based on Tsallis, Rényi, and power spectral entropy
,”
Chaos
28
,
113106
(
2018
).
27.
K.
Peng
and
P.
Shang
, “
Characterizing ordinal network of time series based on complexity-entropy curve
,”
Pattern Recognit.
124
,
108464
(
2022
).
28.
Y.
Wang
,
P.
Shang
, and
Z.
Liu
, “
Analysis of time series through complexity–entropy curves based on generalized fractional entropy
,”
Nonlinear Dyn.
96
,
585
599
(
2019
).
29.
M.
Huang
,
Z.
Sun
,
R. V.
Donner
,
J.
Zhang
,
S.
Guan
, and
Y.
Zou
, “
Characterizing dynamical transitions by statistical complexity measures based on ordinal pattern transition networks
,”
Chaos
31
,
033127
(
2021
).
30.
C.-H.
Yeh
,
Y.
Fang
,
W.
Shi
, and
Y.
Hong
, “
A novel method of visualizing q-complexity-entropy curve in the multiscale fashion
,”
Nonlinear Dyn.
97
,
2813
2828
(
2019
).
31.
W.
Dong
,
S.
Zhang
,
X.
Zhang
,
W.
Jiang
, and
L.
Zhang
, “
A novel method to measure static and dynamic complexity of time series based on visualization curves
,”
Chaos
33
,
013135
(
2023
).
32.
M.
Rostaghi
and
H.
Azami
, “
Dispersion entropy: A measure for time-series analysis
,”
IEEE Signal Process. Lett.
23
,
610
614
(
2016
).
33.
E.
Kafantaris
,
T.-Y. M.
Lo
, and
J.
Escudero
, “
Stratified multivariate multiscale dispersion entropy for physiological signal analysis
,”
IEEE Trans. Biomed. Eng.
70
,
1024
1035
(
2023
).
34.
Q.
Xue
,
B.
Xu
,
C.
He
,
F.
Liu
,
B.
Ju
,
S.
Lu
, and
Y.
Liu
, “
Feature extraction using hierarchical dispersion entropy for rolling bearing fault diagnosis
,”
IEEE Trans. Instrum. Meas.
70
,
1
11
(
2021
).
35.
M.
Xu
,
P.
Shang
, and
S.
Zhang
, “
Complexity analysis of the time series using inverse dispersion entropy
,”
Nonlinear Dyn.
105
,
499
514
(
2021
).
36.
J. S.
Richman
and
J. R.
Moorman
, “
Physiological time-series analysis using approximate entropy and sample entropy
,”
AJP Heart Circ. Physiol.
278
,
H2039
H2049
(
2000
).
37.
Y.
Li
,
X.
Gao
, and
L.
Wang
, “
Reverse dispersion entropy: A new complexity measure for sensor signal
,”
Sensors
19
,
5203
(
2019
).
38.
H.
Azami
and
J.
Escudero
, “
Amplitude-and fluctuation-based dispersion entropy
,”
Entropy
20
,
210
(
2018
).
39.
M.
Martin
,
A.
Plastino
, and
O.
Rosso
, “
Generalized statistical complexity measures: Geometrical and analytical properties
,”
Physica A
369
,
439
462
(
2006
).
40.
M.
Benedicks
and
L.
Carleson
, “
The dynamics of the Hénon map
,”
Ann. Math.
133
,
73
169
(
1991
).
41.
G.
Chen
and
T.
Ueta
, “
Yet another chaotic attractor
,”
Int. J. Bifurcat. Chaos
9
,
1465
1466
(
1999
).
42.
G.
Duffing
, “Erzwungene schwingungen bei beranderlicher eigenfrequenz und ihre tech-nische bedeutung,” Vieweg Braunschweig (1918).
43.
E. N.
Lorenz
, “
Deterministic nonperiodic flow
,”
J. Atmos. Sci.
20
,
130
141
(
1963
).
44.
O. E.
Rössler
, “
An equation for continuous chaos
,”
Phys. Lett. A
57
,
397
398
(
1976
).
45.
M.
Costa
,
A. L.
Goldberger
, and
C.-K.
Peng
, “
Multiscale entropy analysis of complex physiologic time series
,”
Phys. Rev. Lett.
89
,
068102
(
2002
).
46.
W. A.
Smith
and
R. B.
Randall
, “
Rolling element bearing diagnostics using the case western reserve university data: A benchmark study
,”
Mech. Syst. Signal Process.
64–65
,
100
131
(
2015
).
47.
N. E.
Huang
,
Z.
Shen
,
S. R.
Long
,
M. C.
Wu
,
H. H.
Shih
,
Q.
Zheng
,
N.-C.
Yen
,
C. C.
Tung
, and
H. H.
Liu
, “
The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
,”
Proc. R. Soc. London. Ser. A: Math. Phys. Eng. Sci.
454
,
903
995
(
1998
).
48.
Z.
Wu
and
N. E.
Huang
, “
Ensemble empirical mode decomposition: A noise-assisted data analysis method
,”
Adv. Adapt. Data Anal.
1
,
1
41
(
2011
).
49.
K.
Dragomiretskiy
and
D.
Zosso
, “
Variational mode decomposition
,”
IEEE Trans. Signal Process.
62
,
531
544
(
2014
).
50.
J.
He
and
P.
Shang
, “
q-SampEnAve: An adaptive measurement to recognize the patterns for short-term financial time series
,”
Nonlinear Dyn.
94
,
1987
2001
(
2018
).
51.
J.
He
,
P.
Shang
, and
Y.
Zhang
, “
Global recurrence quantification analysis and its application in financial time series
,”
Nonlinear Dyn.
100
,
803
829
(
2020
).
52.
J.
Huang
,
P.
Shang
, and
X.
Zhao
, “
Multifractal diffusion entropy analysis on stock volatility in financial markets
,”
Physica A
391
,
5739
5745
(
2012
).
53.
J.
Huang
and
P.
Shang
, “
Multiscale multifractal diffusion entropy analysis of financial time series
,”
Physica A
420
,
221
228
(
2015
).
54.
X.
Zhao
,
P.
Shang
, and
J.
Wang
, “
Measuring information interactions on the ordinal pattern of stock time series
,”
Phys. Rev. E
87
,
022805
(
2013
).
55.
X.
Zhao
,
P.
Shang
, and
W.
Shi
, “
Multifractal cross-correlation spectra analysis on chinese stock markets
,”
Physica A
402
,
84
92
(
2014
).
You do not currently have access to this content.