A logical sequence of information-theoretic quantifiers of directional (causal) couplings in Markov chains is generated within the framework of dynamical causal effects (DCEs), starting from the simplest DCEs (in terms of localization of their functional elements) and proceeding step-by-step to more complex ones. Thereby, a system of 11 quantifiers is readily obtained, some of them coinciding with previously known causality measures widely used in time series analysis and often called “information transfers” or “flows” (transfer entropy, Ay–Polani information flow, Liang–Kleeman information flow, information response, etc.,) By construction, this step-by-step generation reveals logical relationships between all these quantifiers as specific DCEs. As a further concretization, diverse quantitative relationships between the transfer entropy and the Liang–Kleeman information flow are found both rigorously and numerically for coupled two-state Markov chains.

1.
D.
Chionis
,
A.
Dokhane
,
H.
Ferroukhi
, and
A.
Pautz
,
Chaos
29
,
043126
(
2019
).
2.
A.
Tsonis
,
E. R.
Deyle
,
R. M.
May
,
G.
Sugihara
,
K.
Swanson
,
J. D.
Verbeten
, and
G.
Wang
,
Proc. Natl. Acad. Sci. U.S.A.
112
,
3253
(
2015
).
3.
J.
Runge
,
A.
Gerhardus
,
G.
Varando
,
V.
Eyring
, and
G.
Camps-Valls
,
Nat. Rev. Earth Environ.
4
,
487
505
(
2023
).
6.
M.
Palus
,
V.
Komarek
,
Z.
Hrncir
, and
K.
Sterbova
,
Phys. Rev. E
63
,
046211
(
2001
).
7.
X. S.
Liang
and
R.
Kleeman
,
Phys. Rev. Lett.
95
,
244101
(
2005
).
8.
K.
Hlavackova-Schindler
,
M.
Palus
,
M.
Vejmelka
, and
J.
Bhattacharya
,
Phys. Rep.
441
,
1
(
2007
).
9.
N.
Ay
and
D.
Polani
,
Adv. Complex Syst.
11
,
17
(
2008
).
10.
M.
Vejmelka
and
M.
Palus
,
Phys. Rev. E
77
,
026214
(
2008
).
11.
M.
Staniek
and
K.
Lehnertz
,
Phys. Rev. Lett.
100
,
158101
(
2008
).
12.
L.
Barnett
,
A. B.
Barrett
, and
A. K.
Seth
,
Phys. Rev. Lett.
103
,
238701
(
2009
).
13.
J. T.
Lizier
and
M.
Prokopenko
,
Eur. Phys. J. B
73
,
605
(
2010
).
14.
T.
Bossomaier
,
L.
Barnett
,
M.
Harre
, and
J. T.
Lizier
,
An Introduction to Transfer Entropy. Information Flow in Complex Systems
(
Springer
,
Switzerland
,
2016
).
15.
J.
Runge
,
J.
Heitzig
,
V.
Petoukhov
, and
J.
Kurths
,
Phys. Rev. Lett.
108
,
258701
(
2012
).
16.
D.
Janzing
,
D.
Balduzzi
,
M.
Grosse-Wentrup
, and
B.
Schoelkopf
,
Ann. Stat.
41
,
2324
(
2013
).
17.
18.
M.
Wibral
,
R.
Vicente
, and
J. T.
Lizier
, in
Directed Information Measures in Neuroscience
(
Springer-Verlag,
Berlin
,
2014
).
22.
A.
Auconi
,
B. M.
Friedrich
, and
A.
Giansanti
,
Europhys. Lett.
135
,
28002
(
2021
).
24.
M.
Kaminski
,
M.
Ding
,
W. A.
Truccolo
, and
S. L.
Bressler
,
Biol. Cybern.
85
,
145
(
2001
).
25.
L.
Baccala
and
K.
Sameshima
,
Biol. Cybern.
84
,
463
(
2001
).
26.
M.
Dhamala
,
G.
Rangarajan
, and
M.
Ding
,
Phys. Rev. Lett.
100
,
018701
(
2008
).
27.
S. L.
Bressler
and
A. K.
Seth
,
NeuroImage
58
,
323
(
2011
).
28.
M. G.
Rosenblum
and
A. S.
Pikovsky
,
Phys. Rev. E
64
,
045202R
(
2001
).
29.
M.
Paluš
and
A.
Stefanovska
,
Phys. Rev. E
67
,
055201(R)
(
2003
).
30.
D. A.
Smirnov
and
B. P.
Bezruchko
,
Phys. Rev. E
68
,
046209
(
2003
).
31.
J.
Brea
,
D. F.
Russell
, and
A. B.
Neiman
,
Chaos
16
,
026111
(
2006
).
32.
B.
Kralemann
,
A.
Pikovsky
, and
M.
Rosenblum
,
New J. Phys.
16
,
085013
(
2014
).
33.
I.
Vlachos
,
D.
Kugiumtzis
, and
M.
Paluš
,
Chaos
32
,
053111
(
2022
).
34.
D.
Marinazzo
,
M.
Pellicoro
, and
S.
Stramaglia
,
Phys. Rev. Lett.
100
,
144103
(
2008
).
35.
I.
Vlachos
and
D.
Kugiumtzis
,
Phys. Rev. E
82
,
016207
(
2010
).
36.
L.
Faes
,
G.
Nollo
, and
A.
Porta
,
Phys. Rev. E
83
,
051112
(
2011
).
37.
A.
Montalto
,
S.
Stramaglia
,
L.
Faes
,
G.
Tessitore
,
R.
Prevete
, and
D.
Marinazzo
,
Neural Net.
71
,
159
(
2015
).
38.
B.
Wahl
,
U.
Feudel
,
J.
Hlinka
,
M.
Wächter
,
J.
Peinke
, and
J. A.
Freund
,
Phys. Rev. E
93
,
022213
(
2016
).
39.
M. C.
Romano
,
M.
Thiel
,
J.
Kurths
, and
C.
Grebogi
,
Phys. Rev. E
76
,
036211
(
2007
).
40.
J. F.
Donges
,
Y.
Zou
,
N.
Marwan
, and
J.
Kurths
,
Europhys. Lett.
87
,
48007
(
2009
).
41.
G.
Sugihara
,
R.
May
,
H.
Ye
,
C.
Hsieh
,
E.
Deyle
,
M.
Fogarty
, and
S.
Munch
,
Science
338
,
496
(
2012
).
42.
A.
Ghouse
,
L.
Faes
, and
G.
Valenza
,
Phys. Rev. E
104
,
064208
(
2021
).
43.
45.
M.
Palus
,
A.
Krakovska
,
J.
Jakubik
, and
M.
Chvostekova
,
Chaos
28
,
075307
(
2018
).
46.
A.
Krakovská
,
J.
Jakubík
,
M.
Chvosteková
,
D.
Coufal
,
N.
Jajcay
, and
M.
Paluš
,
Phys. Rev. E
97
,
042207
(
2018
).
47.
J.
Runge
,
S.
Bathiany
,
E.
Bollt
,
G.
Camps-Valls
,
D.
Coumou
,
E.
Deyle
,
C.
Glymour
,
M.
Kretschmer
,
M. D.
Mahecha
,
J.
Munoz-Mari
,
E. H.
van Nes
,
J.
Peters
,
R.
Quax
,
M.
Reichstein
,
M.
Scheffer
,
B.
Scholkopf
,
P.
Spirtes
,
G.
Sugihara
,
J.
Sun
,
K.
Zhang
, and
J.
Zscheischler
,
Nat. Commun.
10
,
2553
(
2019
).
49.
R. G.
James
,
N.
Barnett
, and
J. P.
Crutchfield
,
Phys. Rev. Lett.
116
,
238701
(
2016
).
50.
P. A.
Stokes
and
P. L.
Purdon
,
Proc. Natl. Acad. Sci. U.S.A.
114
,
7063
(
2017
).
51.
M.
Dhamala
,
H.
Liang
,
S. L.
Bressler
, and
M.
Ding
,
NeuroImage
175
,
460
(
2018
).
52.
L.
Barnett
,
A. B.
Barrett
, and
A. K.
Seth
,
NeuroImage
178
,
744
(
2018
).
53.
D. A.
Smirnov
,
Europhys. Lett.
128
,
20006
(
2019
).
54.
D. A.
Smirnov
and
I. I.
Mokhov
,
Phys. Rev. E
92
,
042138
(
2015
).
58.
I. I.
Mokhov
and
D. A.
Smirnov
,
Chaos
32
,
063128
(
2022
).
59.
R. L.
Stratonovich
,
Topics in Theory of Random Noise
(
Gordon and Breach
,
New York
,
1963
).
60.
L.
Arnold
,
Random Dynamical Systems
(
Springer-Verlag,
Berlin
,
1998
).
61.
J.
Pearl
,
Causality: Models, Reasoning, and Inference
(
Cambridge University Press
,
Cambridge
,
2000
).
62.
V. I.
Tikhonov
and
M. A.
Mironov
,
Markov Processes
(
Sov.: Radio
,
Moscow
,
1977
) (in Russian).
63.
Bollt’s IF21 uses the Jensen–Shannon distance instead of the KLD as the distinction functional and does not use any averaging over b j , but implies either a fixed location of the alternative conditional pmf or zeroing of the coupling parameter (the two versions are equivalent for the discrete maps considered in Ref. 21 as discussed in Supplementary material to Ref. 44). That IF was developed to overcome difficulties which arise when one tries to use the KLD for Dirac delta distributions to quantify couplings between deterministically chaotic dynamical systems.
64.
Such a choice corresponds to the LKIF definition20 since the joint distribution of ( x 2 ( τ ) , x 1 ( τ + 1 ) ) equivalent to our notation ( y 0 , x 1 ) is implied in Sec. II of Ref. 20 in the sense p Y X ( 0 , 1 ) ( b j , x 1 ) = i = 1 M ρ X Y ( a i , b j ) p X ( 1 ) [ x 1 | δ i , i δ j , j ] ρ Y ( b j ) p X ( 1 ) [ x 1 | ρ X | Y ( x | b j ) δ j , j ]. There, it is then approximated to make computations easier for continuous-state systems. For discrete systems here, no such approximations are needed and so one can implement the idea of Liang exactly.
65.
For continuous-time systems and infinitesimally small time step (sampling time), this DCE (i.e., the LKIF) reduces to the local entropy difference averaged with even simpler distinction weight function ρ X | Y ( x | b j ) (as obtained in Appendix D2 in Ref. 44) instead of p X ( 1 ) [ x | ρ X | Y ( x | b j ) δ j , j ].
66.
A.
Stips
,
D.
Macias
,
C.
Coughlan
,
E.
Garcia-Gorriz
, and
X. S.
Liang
,
Sci. Rep.
6
,
21691
(
2016
).
67.
H.
Xiao
,
F.
Zhang
,
L.
Miao
,
X. S.
Liang
,
K.
Wu
, and
R.
Liu
,
Clim. Dyn.
55
, 1443–1456 (
2020
).
68.
G.
Wang
,
C.
Zhao
,
M.
Zhang
,
Y.
Zhang
,
M.
Lin
, and
F.
Qiao
,
Sci. Rep.
10
,
17141
(
2020
).
You do not currently have access to this content.