We present a novel method for learning reduced-order models of dynamical systems using nonlinear manifolds. First, we learn the manifold by identifying nonlinear structure in the data through a general representation learning problem. The proposed approach is driven by embeddings of low-order polynomial form. A projection onto the nonlinear manifold reveals the algebraic structure of the reduced-space system that governs the problem of interest. The matrix operators of the reduced-order model are then inferred from the data using operator inference. Numerical experiments on a number of nonlinear problems demonstrate the generalizability of the methodology and the increase in accuracy that can be obtained over reduced-order modeling methods that employ a linear subspace approximation.

1.
O.
Ghattas
and
K.
Willcox
, “
Learning physics-based models from data: Perspectives from inverse problems and model reduction
,”
Acta Numer.
30
,
445
554
(
2021
).
2.
J. L.
Lumley
, “The structures of inhomogeneous turbulent flow,” in Atmospheric Turbulence and Radio Wave Propagation (Nauka, Moscow, 1967), pp. 166–178.
3.
L.
Sirovich
, “
Turbulence and the dynamics of coherent structures. I. Coherent structures
,”
Q. Appl. Math.
45
,
561
571
(
1987
).
4.
P.
Holmes
,
J. L.
Lumley
,
G.
Berkooz
, and
C. W.
Rowley
,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
(
Cambridge University Press
,
Cambridge
,
1996
).
5.
P. J.
Schmid
, “
Dynamic mode decomposition of numerical and experimental data
,”
J. Fluid Mech.
656
,
5
28
(
2010
).
6.
J. H.
Tu
, “Dynamic mode decomposition: Theory and applications,” Ph.D. thesis (Princeton University, 2013).
7.
J. N.
Kutz
,
S. L.
Brunton
,
B. W.
Brunton
, and
J. L.
Proctor
,
Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems
(
SIAM
,
2016
).
8.
P. J.
Schmid
, “
Dynamic mode decomposition and its variants
,”
Annu. Rev. Fluid Mech.
54
,
225
254
(
2022
).
9.
K.
Willcox
and
J.
Peraire
, “
Balanced model reduction via the proper orthogonal decomposition
,”
AIAA J.
40
,
2323
2330
(
2002
).
10.
C. W.
Rowley
, “
Model reduction for fluids, using balanced proper orthogonal decomposition
,”
Int. J. Bifurcat. Chaos
15
,
997
1013
(
2005
).
11.
A.
Quarteroni
,
A.
Manzoni
, and
F.
Negri
, “Reduced basis methods for partial differential equations: An introduction,” in UNITEXT (Springer International Publishing, 2015).
12.
K.
Veroy
and
A. T.
Patera
, “
Certified real-time solution of the parametrized steady incompressible Navier–Stokes equations: Rigorous reduced-basis a posteriori error bounds
,”
Int. J. Numer. Methods Fluids
47
,
773
788
(
2005
).
13.
S.
Chaturantabut
and
D. C.
Sorensen
, “
Nonlinear model reduction via discrete empirical interpolation
,”
SIAM J. Sci. Comput.
32
,
2737
2764
(
2010
).
14.
B.
Peherstorfer
and
K.
Willcox
, “
Data-driven operator inference for nonintrusive projection-based model reduction
,”
Comput. Methods Appl. Mech. Eng.
306
,
196
215
(
2016
).
15.
E.
Qian
,
B.
Kramer
,
B.
Peherstorfer
, and
K.
Willcox
, “
Lift & learn: Physics-informed machine learning for large-scale nonlinear dynamical systems
,”
Physica D
406
,
132401
(
2020
).
16.
A.
Kolmogoroff
, “
Uber die beste Annaherung von Funktionen einer gegebenen Funktionenklasse
,”
Ann. Math.
37
,
107
110
(
1936
).
17.
K.
Lee
and
K. T.
Carlberg
, “
Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders
,”
J. Comput. Phys.
404
,
108973
(
2020
).
18.
Z. Y.
Wan
,
P.
Vlachas
,
P.
Koumoutsakos
, and
T.
Sapsis
, “
Data-assisted reduced-order modeling of extreme events in complex dynamical systems
,”
PLoS One
13
,
e0197704
(
2018
).
19.
S.
Pan
and
K.
Duraisamy
, “
Data-driven discovery of closure models
,”
SIAM J. Appl. Dyn. Syst.
17
,
2381
2413
(
2018
).
20.
Y.
Kim
,
Y.
Choi
,
D.
Widemann
, and
T.
Zohdi
, “
A fast and accurate physics-informed neural network reduced order model with shallow masked autoencoder
,”
J. Comput. Phys.
451
,
110841
(
2022
).
21.
S.
Fresca
and
A.
Manzoni
, “
POD-DL-ROM: Enhancing deep learning-based reduced order models for nonlinear parametrized PDEs by proper orthogonal decomposition
,”
Comput. Methods Appl. Mech. Eng.
388
,
114181
(
2022
).
22.
S.
Jain
,
P.
Tiso
,
J. B.
Rutzmoser
, and
D. J.
Rixen
, “
A quadratic manifold for model order reduction of nonlinear structural dynamics
,”
Comput. Struct.
188
,
80
94
(
2017
).
23.
J.
Barnett
and
C.
Farhat
, “
Quadratic approximation manifold for mitigating the Kolmogorov barrier in nonlinear projection-based model order reduction
,”
J. Comput. Phys.
464
,
111348
(
2022
).
24.
R.
Geelen
,
S.
Wright
, and
K.
Willcox
, “
Operator inference for non-intrusive model reduction with quadratic manifolds
,”
Comput. Methods Appl. Mech. Eng.
403
,
115717
(
2023
).
25.
J.
Axås
,
M.
Cenedese
, and
G.
Haller
, “
Fast data-driven model reduction for nonlinear dynamical systems
,”
Nonlinear Dyn.
111
,
7941
7957
(
2023
).
26.
R.
Geelen
,
L.
Balzano
, and
K.
Willcox
, “Learning latent representations in high-dimensional state spaces using polynomial manifold constructions,” arXiv:2306.13748 (2023).
27.
A.
Kalur
,
P.
Mortimer
,
J.
Sirohi
,
R.
Geelen
, and
K. E.
Willcox
, “Data-driven closures for the dynamic mode decomposition using quadratic manifolds,” in AIAA AVIATION 2023 Forum (AIAA, 2023), p. 4352.
28.
Y.
Bengio
,
A.
Courville
, and
P.
Vincent
, “
Representation learning: A review and new perspectives
,”
IEEE Trans. Pattern Anal. Mach. Intell.
35
,
1798
1828
(
2013
).
29.
R. R.
Craig
and
M. C. C.
Bampton
, “
Coupling of substructures for dynamic analyses
,”
AIAA J.
6
,
1313
1319
(
1968
).
30.
G.
Kerschen
,
M.
Peeters
,
J.
Golinval
, and
A.
Vakakis
, “
Nonlinear normal modes, Part I: A useful framework for the structural dynamicist
,”
Mech. Syst. Signal Process.
23
,
170
194
(
2009
).
31.
A. K.
Noor
and
J. M.
Peters
, “
Reduced basis technique for nonlinear analysis of structures
,”
AIAA J.
18
,
455
462
(
1980
).
32.
E. H.
Dowell
, “
Eigenmode analysis in unsteady aerodynamics-reduced-order models
,”
AIAA J.
34
,
1578
1583
(
1996
).
33.
E. H.
Dowell
,
K. C.
Hall
, and
M. C.
Romanowski
, “
Eigenmode analysis in unsteady aerodynamics: Reduced order models
,”
Appl. Mech. Rev.
50
,
371
386
(
1997
).
34.
C. W.
Rowley
,
I.
Mezić
,
S.
Bagheri
,
P.
Schlatter
, and
D. S.
Henningson
, “
Spectral analysis of nonlinear flows
,”
J. Fluid Mech.
641
,
115
127
(
2009
).
35.
I.
Mezić
, “
Analysis of fluid flows via spectral properties of the Koopman operator
,”
Annu. Rev. Fluid Mech.
45
,
357
378
(
2013
).
36.
C.
Foias
,
M.
Jolly
,
I.
Kevrekidis
,
G. R.
Sell
, and
E.
Titi
, “
On the computation of inertial manifolds
,”
Phys. Lett. A
131
,
433
436
(
1988
).
37.
M.
Jolly
,
I.
Kevrekidis
, and
E.
Titi
, “
Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: Analysis and computations
,”
Physica D
44
,
38
60
(
1990
).
38.
M. E.
Johnson
,
M. S.
Jolly
, and
I. G.
Kevrekidis
, “
Two-dimensional invariant manifolds and global bifurcations: Some approximation and visualization studies
,”
Numer. Algorithms
14
,
125
140
(
1997
).
39.
M. D.
Graham
and
I. G.
Kevrekidis
, “
Alternative approaches to the Karhunen-Loeve decomposition for model reduction and data analysis
,”
Comput. Chem. Eng.
20
,
495
506
(
1996
).
40.
P.
Constantin
,
P. S.
Constantin
,
C.
Foias
,
B.
Nicolaenko
, and
R.
Temam
,
Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations
(
Springer Science & Business Media
,
1989
), Vol. 70.
41.
B.
Nicolaenko
,
B.
Scheurer
, and
R.
Temam
, “
Some global dynamical properties of a class of pattern formation equations
,”
Commun. Partial Differ. Equ.
14
,
245
297
(
1989
).
42.
J.
Mallet-Paret
and
G. R.
Sell
, “
Inertial manifolds for reaction diffusion equations in higher space dimensions
,”
J. Am. Math. Soc.
1
,
805
866
(
1988
).
43.
A.
Deane
,
I.
Kevrekidis
,
G. E.
Karniadakis
, and
S.
Orszag
, “
Low-dimensional models for complex geometry flows: Application to grooved channels and circular cylinders
,”
Phys. Fluids A: Fluid Dyn.
3
,
2337
2354
(
1991
).
44.
C.
Chen
,
B.
He
,
Y.
Ye
, and
X.
Yuan
, “
The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent
,”
Math. Program.
155
,
57
79
(
2016
).
45.
P. H.
Schönemann
, “
A generalized solution of the orthogonal procrustes problem
,”
Psychometrika
31
,
1
10
(
1966
).
46.
C.
Gu
, “
QLMOR: A projection-based nonlinear model order reduction approach using quadratic-linear representation of nonlinear systems
,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
30
,
1307
1320
(
2011
).
47.
B.
Kramer
and
K. E.
Willcox
, “
Nonlinear model order reduction via lifting transformations and proper orthogonal decomposition
,”
AIAA J.
57
,
2297
2307
(
2019
).
48.
P.
Benner
,
P.
Goyal
,
J.
Heiland
, and
I.
Pontes Duff
, “
A quadratic decoder approach to nonintrusive reduced-order modeling of nonlinear dynamical systems
,”
PAMM
23
,
e202200049
(
2023
).
49.
S. A.
McQuarrie
,
C.
Huang
, and
K. E.
Willcox
, “
Data-driven reduced-order models via regularised operator inference for a single-injector combustion process
,”
J. R. Soc. New Zealand
51
,
194
211
(
2021
).
50.
S. M.
Allen
and
J. W.
Cahn
, “
A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening
,”
Acta Metall.
27
,
1085
1095
(
1979
).
51.
H.
Song
,
L.
Jiang
, and
Q.
Li
, “
A reduced order method for Allen–Cahn equations
,”
J. Comput. Appl. Math.
292
,
213
229
(
2016
).
52.
C.
Dechanubeksa
and
S.
Chaturantabut
, “
An application of a modified gappy proper orthogonal decomposition on complexity reduction of Allen-Cahn equation
,”
Algorithms
13
,
148
(
2020
).
53.
P.
Benner
and
T.
Breiten
, “
Two-sided projection methods for nonlinear model order reduction
,”
SIAM J. Sci. Comput.
37
,
B239
B260
(
2015
).
54.
A.
Mendible
,
S. L.
Brunton
,
A. Y.
Aravkin
,
W.
Lowrie
, and
J. N.
Kutz
, “
Dimensionality reduction and reduced-order modeling for traveling wave physics
,”
Theor. Comput. Fluid Dyn.
34
,
385
400
(
2020
).
55.
See https://www.mathematik.tu-dortmund.de/~featflow/en/benchmarks/ff_benchmarks.html for more details on the FEATFLOW benchmark problems.
56.
B. R.
Noack
,
K.
Afanasiev
,
M.
Morzyński
,
G.
Tadmor
, and
F.
Thiele
, “
A hierarchy of low-dimensional models for the transient and post-transient cylinder wake
,”
J. Fluid Mech.
497
,
335
363
(
2003
).
57.
J.-C.
Loiseau
,
S. L.
Brunton
, and
B. R.
Noack
,
From the POD-Galerkin Method to Sparse Manifold Models
(
De Gruyter
,
Berlin
,
2021
), Chap. 9, pp. 279–320.
58.
P. J.
Baddoo
,
B.
Herrmann
,
B. J.
McKeon
,
J.
Nathan Kutz
, and
S. L.
Brunton
, “
Physics-informed dynamic mode decomposition
,”
Proc. R. Soc. A
479
,
20220576
(
2023
).
59.
H.
Sharma
,
Z.
Wang
, and
B.
Kramer
, “
Hamiltonian operator inference: Physics-preserving learning of reduced-order models for canonical Hamiltonian systems
,”
Physica D
431
,
133122
(
2022
).
60.
W. I. T.
Uy
,
D.
Hartmann
, and
B.
Peherstorfer
, “
Operator inference with roll outs for learning reduced models from scarce and low-quality data
,”
Comput. Math. Appl.
145
,
224
239
(
2023
).
61.
M.
Alnæs
et al., The FEniCS project version 1.5. Archive of Numerical Software 3 (2015).
62.
A.
Logg
,
K.-A.
Mardal
, and
G.
Wells
,
Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book
(
Springer Science & Business Media
,
2012
), Vol. 84.
You do not currently have access to this content.