Multifractal analysis is a powerful approach for characterizing ergodic or localized nature of eigenstates in complex quantum systems. In this context, the eigenvectors of random matrices belonging to invariant ensembles naturally serve as models for ergodic states. However, it has been found that the finite-size versions of multifractal dimensions for these eigenvectors converge to unity logarithmically slowly with increasing system size N. In fact, this strong finite-size effect is capable of distinguishing the ergodicity behavior of orthogonal and unitary invariant classes. Motivated by this observation, in this work, we provide semi-analytical expressions for the ensemble-averaged multifractal dimensions associated with eigenvectors in the orthogonal-to-unitary crossover ensemble. Additionally, we explore shifted and scaled variants of multifractal dimensions, which, in contrast to the multifractal dimensions themselves, yield distinct values in the orthogonal and unitary limits as N and, therefore, may serve as a convenient measure for studying the crossover. We substantiate our results using Monte Carlo simulations of the underlying crossover random matrix model. We then apply our results to analyze the multifractal dimensions in a quantum kicked rotor, a Sinai billiard system, and a correlated spin-chain model in a random field. The orthogonal-to-unitary crossover in these systems is realized by tuning relevant system parameters, and we find that in the crossover regime, the observed finite-dimension multifractal dimensions can be captured very well with our results.

1.
C. E.
Porter
and
R. G.
Thomas
, “
Fluctuations of nuclear reaction widths
,”
Phys. Rev.
104
,
483
(
1956
).
2.
E. P.
Wigner
, “
Random matrices in physics
,”
SIAM Rev.
9
,
1
(
1967
).
3.
T. A.
Brody
,
J.
Flores
,
J. B.
French
,
P. A.
Mello
,
A.
Pandey
, and
S. S. M.
Wong
, “
Random matrix physics: Spectrum and strength fluctuations
,”
Rev. Mod. Phys.
53
,
385
(
1981
).
4.
M. L.
Mehta
,
Random Matrices
, 3rd ed. (
Elsevier
,
Amsterdam
,
2004
).
5.
M. V.
Berry
, “
Regular and irregular semiclassical wavefunctions
,”
J. Phys. A
10
,
2083
(
1977
).
6.
M.
Shapiro
and
G.
Goelman
, “
Onset of chaos in an isolated energy eigenstate
,”
Phys. Rev. Lett.
53
,
1714
(
1984
).
7.
F. M.
Izrailev
, “
Chaotic structure of eigenfunctions in systems with maximal quantum chaos
,”
Phys. Lett. A
125
,
250
(
1987
).
8.
M.
Kús
,
J.
Mostowski
, and
F.
Haake
, “
Universality of eigenvector statistics of kicked tops of different symmetries
,”
J. Phys. A
21
,
L1073
(
1988
).
9.
S. W.
McDonald
and
A. N.
Kaufman
, “
Wave chaos in the stadium: Statistical properties of short-wave solutions of the Helmholtz equation
,”
Phys. Rev. A
37
,
3067
(
1988
).
10.
F.
Haake
and
K.
Życzkowski
, “
Random-matrix theory and eigenmodes of dynamical systems
,”
Phys. Rev. A
42
,
1013(R)
(
1990
).
11.
R.
Aurich
and
F.
Steiner
, “
Exact theory for the quantum eigenstates of a strongly chaotic system
,”
Physica D
48
,
445
(
1991
).
12.
R.
Aurich
and
F.
Steiner
, “
Statistical properties of highly excited quantum eigenstates of a strongly chaotic system
,”
Physica D
64
,
185
(
1993
).
13.
B.
Li
and
M.
Robnik
, “
Statistical properties of high-lying chaotic eigenstates
,”
J. Phys. A
27
,
5509
(
1994
).
14.
F.
Simmel
and
M.
Eckert
, “
Statistical measures for eigenfunctions of nonseparable quantum billiard systems
,”
Physica D
97
,
517
(
1996
).
15.
T.
Prosen
, “
Quantization of generic chaotic 3D billiard with smooth boundary II: Structure of high-lying eigenstates
,”
Phys. Lett. A
233
,
332
(
1997
).
16.
A.
Bäcker
, “Numerical aspects of eigenvalues and eigenfunctions of chaotic quantum systems,” in The Mathematical Aspects of Quantum Maps, edited by M. D. Esposti and S. Graffi (Springer, Berlin, 2003), pp. 91–144.
17.
S.
Nonnenmacher
, “
Crystal properties of eigenstates for quantum cat maps
,”
Nonlinearity
10
,
1569
(
1997
).
18.
S.
Nonnenmacher
and
A.
Voros
, “
Chaotic eigenfunctions in phase space
,”
J. Stat. Phys.
92
,
431
(
1998
).
19.
S.
Nonnenmacher
, “Anatomy of quantum chaotic eigenstates,” in Chaos, Progress in Mathematical Physics, edited by B. Duplantier, S. Nonnenmacher, and V. Rivasseau (Birkhäuser, Basel, 2013), Vol. 66, pp. 193–238.
20.
A.
Bäcker
,
M.
Haque
, and
I. M.
Khaymovich
, “
Multifractal dimensions for random matrices, chaotic quantum maps, and many-body systems
,”
Phys. Rev. E
100
,
032117
(
2019
).
21.
J. M.
Deutsch
, “
Quantum statistical mechanics in a closed system
,”
Phys. Rev. A
43
,
2046
(
1991
).
22.
M.
Srednicki
, “
Chaos and quantum thermalization
,”
Phys. Rev. E
50
,
888
(
1994
).
23.
D. M.
Basko
,
I. L.
Aleiner
, and
B. L.
Altshuler
, “
Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states
,”
Ann. Phys.
321
,
1126
(
2006
).
24.
B.
Bauer
and
C.
Nayak
, “
Area laws in a many-body localized state and its implications for topological order
,”
J. Stat. Mech. Theory Exp.
2013
,
P09005
(
2013
).
25.
R.
Nandkishore
and
D. A.
Huse
, “
Many-body localization and thermalization in quantum statistical mechanics
,”
Ann. Rev. Condens. Matter. Phys.
6
(
1
),
15
(
2015
).
26.
D. A.
Abanin
and
Z.
Papic
, “
Recent progress in many-body localization
,”
Ann. Phys.
529
,
1700169
(
2017
).
27.
D. A.
Abanin
,
E.
Altman
,
I.
Bloch
, and
M.
Serbyn
, “
Colloquium: Many-body localization, thermalization, and entanglement
,”
Rev. Mod. Phys.
91
,
021001
(
2019
).
28.
H.-J.
Sommers
and
S.
Iida
, “
Eigenvector statistics in the crossover region between Gaussian orthogonal and unitary ensembles
,”
Phys. Rev. E
49
,
R2513(R)
(
1994
).
29.
B.
Mandelbrot
,
The Fractal Geometry of Nature
(
W. H. Freeman and Co
,
1983
).
30.
L. F.
Richardson
, “
The problem of contiguity: An appendix to statistics of deadly quarrels
,”
Gen. Syst. Yearb.
6
,
139
(
1961
).
31.
B.
Mandelbrot
, “
How long is the coast of Britain? Statistical self-similarity and fractional dimension
,”
Science
156
,
636
(
1967
).
32.
A.
Vulpiani
, “
Lewis Fry Richardson: Scientist, visionary and pacifist
,”
Lett. Mat. Int.
2
,
121
(
2014
).
33.
L. F.
Richardson
, “Fractals,” in Collected Papers of Lewis Fry Richardson: Meteorology and Numerical Analysis, edited by O. M. Ashford et al. (Cambridge University Press, Cambridge, 1993), Vol. 1.
34.
K. R.
Sreenivasan
, “
Fractals and multifractals in fluid turbulence
,”
Annu. Rev. Fluid Mech.
23
,
539
(
1991
).
35.
H. E.
Stanley
and
P.
Meakin
, “
Multifractal phenomena in physics and chemistry
,”
Nature
335
,
405
(
1988
).
36.
Z. Q.
Jiang
,
W. J.
Xie
,
W. X.
Zhou
, and
D.
Sornette
, “
Multifractal analysis of financial markets: A review
,”
Rep. Prog. Phys.
82
,
125901
(
2019
).
37.
M.
Schreiber
and
H.
Grussbach
, “
Multifractal wave functions at the Anderson transition
,”
Phys. Rev. Lett.
67
,
607
(
1991
).
38.
B.
Huckenstein
, “
Scaling theory of the integer quantum Hall effect
,”
Rev. Mod. Phys.
67
,
357
(
1995
).
39.
A. D.
Mirlin
and
F.
Evers
, “
Multifractality and critical fluctuations at the Anderson transition
,”
Phys. Rev. B
62
,
7920
(
2000
).
40.
F.
Evers
and
A. D.
Mirlin
, “
Anderson transitions
,”
Rev. Mod. Phys.
80
,
1355
(
2008
).
41.
M.
Tarzia
, “
Many-body localization transition in Hilbert space
,”
Phys. Rev. B
102
,
014208
(
2020
).
42.
F.
Pietracaprina
and
N.
Laflorencie
, “
Hilbert-space fragmentation, multifractality, and many-body localization
,”
Ann. Phys.
435
,
168502
(
2021
).
43.
T.
Orito
and
K.-I.
Imura
, “
Multifractality and Fock-space localization in many-body localized states: One-particle density matrix perspective
,”
Phys. Rev. B
103
,
214206
(
2021
).
44.
Y. Y.
Atas
and
E.
Bogomolny
, “
Multifractality of eigenfunctions in spin chains
,”
Phys. Rev. E
86
,
021104
(
2012
).
45.
Y. Y.
Atas
and
E.
Bogomolny
, “
Calculation of multi-fractal dimensions in spin chains
,”
Philos. Trans. R. Soc. A
372
,
20120520
(
2014
).
46.
C.
Monthus
, “
Many-body-localization transition: Strong multifractality spectrum for matrix elements of local operators
,”
J. Stat. Mech.
2016
,
073301
(
2016
).
47.
D.
Voliotis
, “
Multifractality in aperiodic quantum spin chains
,”
J. Phys. A Math. Theor.
52
,
475001
(
2019
).
48.
N.
Macé
,
F.
Alet
, and
N.
Laflorencie
, “
Multifractal scalings across the many-body localization transition
,”
Phys. Rev. Lett.
123
,
180601
(
2019
).
49.
D. J.
Luitz
,
I. M.
Khaymovich
, and
Y. B.
Lev
, “
Multifractality and its role in anomalous transport in the disordered XXZ spin-chain
,”
SciPost Phys. Core
2
,
006
(
2020
).
50.
A.
Solórzano
,
L. F.
Santos
, and
E. J.
Torres-Herrera
, “
Multifractality and self-averaging at the many-body localization transition
,”
Phys. Rev. Res.
3
,
L032030
(
2021
).
51.
J.
Lindinger
,
A.
Buchleitner
, and
A.
Rodríguez
, “
Many-body multifractality throughout bosonic superfluid and Mott insulator phases
,”
Phys. Rev. Lett.
122
,
106603
(
2019
).
52.
L.
Pausch
,
E. G.
Carnio
,
A.
Rodrǵuez
, and
A.
Buchleitner
, “
Chaos and ergodicity across the energy spectrum of interacting Bosons
,”
Phys. Rev. Lett.
126
,
150601
(
2021
).
53.
J.
Martin
,
O.
Giraud
, and
B.
Gerogeot
, “
Multifractality and intermediate statistics in quantum maps
,”
Phys. Rev. E
77
,
035201(R)
(
2008
).
54.
J.
Martin
,
I.
Garcia-Mata
,
O.
Giraud
, and
B.
Gerogeot
, “
Multifractal wave functions of simple quantum maps
,”
Phys. Rev. E
82
,
046206
(
2010
).
55.
A. M.
Bilen
,
I.
Garcá-Mata
,
B.
Georgeot
, and
O.
Giraud
, “
Multifractality of open quantum systems
,”
Phys. Rev. E
100
,
032223
(
2019
).
56.
J. P.
Keating
and
H.
Ueberschaer
, “Multifractal eigenfunctions for quantum star graphs,” arXiv:2202.13634 (2022).
57.
Q.
Wang
and
M.
Robnik
, “
Multifractality in quasienergy space of coherent states as a signature of quantum chaos
,”
Entropy
23
(
10
),
1347
(
2021
).
58.
M. S.
Hussein
and
M. P.
Pato
, “
Fractal structure of random matrices
,”
Physica A
285
,
383
(
2000
).
59.
E.
Bogomolny
and
O.
Giraud
, “
Eigenfunction entropy and spectral compressibility for critical random matrix ensembles
,”
Phys. Rev. Lett.
106
,
044101
(
2011
).
60.
E.
Bogomolny
and
O.
Giraud
, “
Multifractal dimensions for all moments for certain critical random matrix ensembles in the strong multifractality regime
,”
Phys. Rev. E
85
,
046208
(
2012
).
61.
V. E.
Kravtsov
,
I.
Khaymovich
,
E.
Cuevas
, and
M.
Amini
, “
A random matrix model with localization and ergodic transitions
,”
New J. Phys.
17
,
122002
(
2015
).
62.
E.
Bogomolny
, “
Spectral statistics of random Toeplitz matrices
,”
Phys. Rev. E
102
,
040101(R)
(
2020
).
63.
E.
Bogomolny
and
O.
Giraud
, “
Statistical properties of structured random matrices
,”
Phys. Rev. E
103
,
042213
(
2021
).
64.
A.
Pandey
and
M. L.
Mehta
, “
Gaussian ensembles of random Hermitian matrices intermediate between orthogonal and unitary ones
,”
Commun. Math. Phys.
87
,
449
(
1983
).
65.
M. L.
Mehta
and
A.
Pandey
, “
On some Gaussian ensembles of Hermitian matrices
,”
J. Phys. A Math. Gen.
16
,
2655
(
1983
).
66.
K.
Życzkowski
and
G.
Lenz
, “
Eigenvector statistics for the transitions from the orthogonal to the unitary ensemble
,”
Z. Phys. B Condens. Matter
82
,
299
(
1991
).
67.
A.
Pandey
and
P.
Shukla
, “
Eigenvalue correlations in the circular ensembles
,”
J. Phys. A Math. Gen.
24
,
3907
(
1991
).
68.
K.
Frahm
and
J.-L.
Pichard
, “
Magnetoconductance of ballistic chaotic quantum dots: A Brownian motion approach for the S-matrix
,”
J. Phys. I France
5
,
847
(
1995
).
69.
C.
Mahaux
and
H. A.
Weidenmüller
,
Shell Model Approach to Nuclear Reactions
(
North Holland
,
Amsterdam
,
1969
).
70.
K.
Życzkowski
and
M.
Kuś
, “
Interpolating ensembles of random unitary matrices
,”
Phys. Rev. E
53
,
319
(
1996
).
71.
P.
Shukla
, “
Effect of symmetry breaking on “chaotic” eigenfunctions
,”
Phys. Rev. E
53
,
1362
(
1996
).
72.
S.
Kumar
and
A.
Pandey
, “
Crossover ensembles of random matrices and skew-orthogonal polynomials
,”
Ann. Phys.
326
,
1877
(
2011
).
73.
A.
Sarkar
,
M.
Kothiyal
, and
S.
Kumar
, “
Distribution of the ratio of two consecutive level spacings in orthogonal to unitary crossover ensembles
,”
Phys. Rev. E
101
,
012216
(
2020
).
74.
R.
Chandramouli
,
R. K.
Srivastav
, and
S.
Kumar
, “
Electronic transport in chaotic mesoscopic cavities: A Kwant and random matrix theory based exploration
,”
Chaos
30
,
123120
(
2020
).
75.
D.
Kundu
,
S.
Kumar
, and
S.
Sen Gupta
, “
Spectral crossovers and universality in quantum spin chains coupled to random fields
,”
Phys. Rev. B
105
,
014205
(
2022
).
76.
F.
Haake
,
Quantum Signatures of Chaos
, 3rd ed. (
Springer
,
Berlin
,
2010
).
77.
M. S.
Santhanam
,
S.
Paul
, and
J. B.
Kannan
, “
Quantum kicked rotor and its variants: Chaos, localization and beyond
,”
Phys. Rep.
956
,
1
(
2022
).
78.
F. M.
Izrailev
, “
Limiting quasienergy statistics for simple quantum systems
,”
Phys. Rev. Lett.
56
,
541
(
1986
).
79.
G.
Casati
,
I.
Guarneri
,
F.
Izrailev
, and
R.
Scharf
, “
Scaling behavior of localization in quantum chaos
,”
Phys. Rev. Lett.
64
,
5
(
1990
).
80.
F. M.
Izrailev
, “
Simple models of quantum chaos: Spectrum and eigenfunctions
,”
Phys. Rep.
196
,
299
(
1990
).
81.
A.
Pandey
,
R.
Ramaswamy
, and
P.
Shukla
, “
Symmetry breaking in quantum chaotic systems
,”
Pramana
41
,
75
(
1993
).
82.
P.
Shukla
and
A.
Pandey
, “
The effect of symmetry-breaking in ‘Chaotic’ spectral correlations
,”
Nonlinearity
10
,
979
(
1997
).
83.
M. V.
Berry
and
M.
Tabor
, “
Level clustering in the regular spectrum
,”
Proc. R. Soc. Lond. A
356
,
375
(
1977
).
84.
O.
Bohigas
,
M. J.
Giannoni
, and
C.
Schmit
, “
Characterization of chaotic quantum spectra and universality of level fluctuation laws
,”
Phys. Rev. Lett.
52
,
1
(
1984
).
85.
Y. G.
Sinai
, “
Dynamical systems with elastic reflections
,”
Russ. Math Surv.
25
,
137
(
1970
).
86.
Y. G.
Sinai
, “
On the foundations of the ergodic hypothesis for a dynamical system of statistical mechanics
,”
Sov. Math Dokl.
4
,
1818
(
1963
).
87.
C. W.
Groth
,
M.
Wimmer
,
A. R.
Akhmerov
, and
X.
Waintal
,
New J. Phys.
16
(
6
),
063065
(
2014
).
88.
E.
Cuevas
,
E.
Louis
, and
J. A.
Vergés
, “
Model of quantum chaotic billiards: Spectral statistics and wave functions in two dimensions
,”
Phys. Rev. Lett.
77
,
1970
(
1996
).
89.
U.
Grimm
,
R. A.
Römer
,
M.
Schreiber
, and
J.-X.
Zhong
, “
Universal level- spacing statistics in quasiperiodic tight-binding models
,”
Mater. Sci. Eng. A
294
,
564
(
2000
).
90.
L.
Huang
,
Y.-C.
Lai
, and
C.
Grebogi
, “
Characteristics of level-spacing statistics in chaotic graphene billiards
,”
Chaos
21
,
013102
(
2011
).
91.
J.
Wurm
,
A.
Rycerz
,
İ.
Adagideli
,
M.
Wimmer
,
K.
Richter
, and
H. U.
Baranger
, “
Symmetry classes in graphene quantum dots: Universal spectral statistics, weak localization, and conductance fluctuations
,”
Phys. Rev. Lett.
102
,
056806
(
2009
).
92.
J.
Wurm
,
K.
Richter
, and
İ.
Adagideli
, “
Edge effects in graphene nanostructures: From multiple reflection expansion to density of states
,”
Phys. Rev. B
84
,
075468
(
2011
).
93.
B.
Dietz
,
T.
Klaus
,
M.
Miski-Oglu
,
A.
Richter
,
M.
Wunderle
, and
C.
Bouazza
, “
Spectral properties of Dirac billiards at the van Hove singularities
,”
Phys. Rev. Lett.
116
,
023901
(
2016
).
94.
P.
Yu
,
Z.-Y.
Li
,
H.-Y.
Xu
,
L.
Huang
,
B.
Dietz
,
C.
Grebogi
, and
Y.-C.
Lai
, “
Gaussian orthogonal ensemble statistics in graphene billiards with the shape of classically integrable billiards
,”
Phys. Rev. E
94
,
062214
(
2016
).
95.
E. N.
Economou
,
Green’s Functions in Quantum Physics
(
Springer
,
Berlin
,
2006
).
96.
R.
Peierls
, “
On the theory of diamagnetism of conduction electrons
,”
Z. Phys.
80
,
763
(
1933
).
97.
Y.
Avishai
,
J.
Richert
, and
R.
Berkovits
, “
Level statistics in a Heisenberg chain with random magnetic field
,”
Phys. Rev. B
66
,
052416
(
2002
).
98.
R.
Modak
and
S.
Mukerjee
, “
Finite size scaling in crossover among different random matrix ensembles in microscopic lattice models
,”
New J. Phys.
16
,
093016
(
2014
).
You do not currently have access to this content.