We consider the problem of filtering dynamical systems, possibly stochastic, using observations of statistics. Thus, the computational task is to estimate a time-evolving density ρ ( v , t ) given noisy observations of the true density ρ ; this contrasts with the standard filtering problem based on observations of the state v. The task is naturally formulated as an infinite-dimensional filtering problem in the space of densities ρ. However, for the purposes of tractability, we seek algorithms in state space; specifically, we introduce a mean-field state-space model, and using interacting particle system approximations to this model, we propose an ensemble method. We refer to the resulting methodology as the ensemble Fokker–Planck filter (EnFPF). Under certain restrictive assumptions, we show that the EnFPF approximates the Kalman–Bucy filter for the Fokker–Planck equation, which is the exact solution to the infinite-dimensional filtering problem. Furthermore, our numerical experiments show that the methodology is useful beyond this restrictive setting. Specifically, the experiments show that the EnFPF is able to correct ensemble statistics, to accelerate convergence to the invariant density for autonomous systems, and to accelerate convergence to time-dependent invariant densities for non-autonomous systems. We discuss possible applications of the EnFPF to climate ensembles and to turbulence modeling.

1.
A. H.
Jazwinski
,
Stochastic Processes and Filtering Theory
(Academic Press, Inc., New York, 1970).
2.
E.
Kalnay
,
Atmospheric Modeling, Data Assimilation and Predictability
(
Cambridge University Press
,
New York
,
2002
).
3.
K.
Law
,
A.
Stuart
, and
K.
Zygalakis
,
Data Assimilation: A Mathematical Introduction
(Springer International Publishing, 2015).
4.
S.
Reich
and
C.
Cotter
,
Probabilistic Forecasting and Bayesian Data Assimilation
(
Cambridge University Press
,
Cambridge
,
2015
).
5.
M. E.
Gurtin
,
An Introduction to Continuum Mechanics
(Academic Press, 1981), Vol. 158.
6.
O.
Gonzalez
and
A. M.
Stuart
,
A First Course in Continuum Mechanics
(Cambridge University Press, Cambridge, 2008).
7.
G.
Evensen
, “
Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics
,”
J. Geophys. Res.: Oceans
99
,
10143
10162
, https://doi.org/10.1029/94JC00572 (
1994
).
8.
D.
Crişan
,
P.
Del Moral
, and
T. J.
Lyons
, “
Interacting particle systems approximations of the Kushner-Stratonovitch equation
,”
Adv. Appl. Probab.
31
,
819
838
(
1999
), 1428398.
9.
E.
Calvello
,
S.
Reich
, and
A. M.
Stuart
, “Ensemble Kalman methods: A mean field perspective,” arxiv:2209.11371 [cs, math] (2022).
10.
R. F. Curtain and A. J. Pritchard,
Infinite Dimensional Linear Systems Theory
(Springer-Verlag, Berlin/Heidelberg, 1978), Vol. 8.
11.
T.
Yang
,
P. G.
Mehta
, and
S. P.
Meyn
, “
Feedback particle filter
,”
IEEE Trans. Autom. Control
58
,
2465
2480
(
2013
).
12.
S.
Reich
, “
Data assimilation: The Schrödinger perspective
,”
Acta Numer.
28
,
635
711
(
2019
).
13.
D.
Crisan
and
J.
Xiong
, “
Approximate McKean–Vlasov representations for a class of SPDEs
,”
Stochastics
82
,
53
68
(
2010
).
14.
S.
Pathiraja
,
S.
Reich
, and
W.
Stannat
, “
McKean–Vlasov SDEs in nonlinear filtering
,”
SIAM J. Control Optim.
59
,
4188
4215
(
2021
).
15.
R. V.
Abramov
, “
The multidimensional maximum entropy moment problem: A review of numerical methods
,”
Commun. Math. Sci.
8
,
377
392
(
2010
).
16.
G. A.
Pavliotis
and
A. M.
Stuart
,
Multiscale Methods: Averaging and Homogenization
(Springer, New York, 2008), Vol. 53.
17.
G.
Drótos
,
T.
Bódai
, and
T.
Tél
, “
Quantifying nonergodicity in nonautonomous dissipative dynamical systems: An application to climate change
,”
Phys. Rev. E
94
,
022214
(
2016
).
18.
S.
Dirren
and
G. J.
Hakim
, “
Toward the assimilation of time-averaged observations
,”
Geophys. Res. Lett.
32
,
L04804
, https://doi.org/10.1029/2004GL021444 (
2005
).
19.
D.
Rey
,
M.
Eldridge
,
U.
Morone
,
H. D. I.
Abarbanel
,
U.
Parlitz
, and
J.
Schumann-Bischoff
, “
Using waveform information in nonlinear data assimilation
,”
Phys. Rev. E
90
,
062916
(
2014
).
20.
E.
Bach
,
S.
Mote
,
V.
Krishnamurthy
,
A. S.
Sharma
,
M.
Ghil
, and
E.
Kalnay
, “
Ensemble Oscillation Correction (EnOC): Leveraging oscillatory modes to improve forecasts of chaotic systems
,”
J. Clim.
34
,
5673
5686
(
2021
).
21.
K.
Bryan
, “
Accelerating the convergence to equilibrium of ocean-climate models
,”
J. Phys. Oceanogr.
14
,
666
673
(
1984
).
22.
J. D.
Daron
and
D. A.
Stainforth
, “
On quantifying the climate of the nonautonomous Lorenz-63 model
,”
Chaos
25
,
043103
(
2015
).
23.
G.
Drótos
,
T.
Bódai
, and
T.
Tél
, “
On the importance of the convergence to climate attractors
,”
Eur. Phys. J. Spec. Top.
226
,
2031
2038
(
2017
).
24.
C.
Deser
,
F.
Lehner
,
K. B.
Rodgers
,
T.
Ault
,
T. L.
Delworth
,
P. N.
DiNezio
,
A.
Fiore
,
C.
Frankignoul
,
J. C.
Fyfe
,
D. E.
Horton
,
J. E.
Kay
,
R.
Knutti
,
N. S.
Lovenduski
,
J.
Marotzke
,
K. A.
McKinnon
,
S.
Minobe
,
J.
Randerson
,
J. A.
Screen
,
I. R.
Simpson
, and
M.
Ting
, “
Insights from Earth system model initial-condition large ensembles and future prospects
,”
Nat. Clim. Change
10
,
277
286
(
2020
).
25.
Z.
Wang
,
J.
Xin
, and
Z.
Zhang
, “
DeepParticle: Learning invariant measure by a deep neural network minimizing Wasserstein distance on data generated from an interacting particle method
,”
J. Comput. Phys.
464
,
111309
(
2022
).
26.
C.-R.
Hwang
,
S.-Y.
Hwang-Ma
, and
S.-J.
Sheu
, “
Accelerating diffusions
,”
Ann. Appl. Probab.
15
,
1433
1444
(
2005
).
27.
A.
Abdulle
,
G. A.
Pavliotis
, and
G.
Vilmart
, “
Accelerated convergence to equilibrium and reduced asymptotic variance for Langevin dynamics using Stratonovich perturbations
,”
C. R. Math.
357
,
349
354
(
2019
).
28.
K. S.
Nelson
and
O. B.
Fringer
, “
Reducing spin-up time for simulations of turbulent channel flow
,”
Phys. Fluids
29
,
105101
(
2017
).
29.
B.
Goldys
and
B.
Maslowski
, “Exponential ergodicity for stochastic reaction–diffusion equations,” in Stochastic Partial Differential Equations and Applications—VII, edited by G. D. Prato and L. Tubaro (Chapman and Hall/CRC, 2005).
30.
O. R.
Isik
, “
Spin up problem and accelerating convergence to steady state
,”
Appl. Math. Modell.
37
,
3242
3253
(
2013
).
31.
O. R.
Isik
,
A.
Takhirov
, and
H.
Zheng
, “
Second order time relaxation model for accelerating convergence to steady-state equilibrium for Navier–Stokes equations
,”
Appl. Numer. Math.
119
,
67
78
(
2017
).
32.
L.
Arnold
,
Random Dynamical Systems
(Springer, Berlin, 1998).
33.
M. D.
Chekroun
,
E.
Simonnet
, and
M.
Ghil
, “
Stochastic climate dynamics: Random attractors and time-dependent invariant measures
,”
Physica D
240
,
1685
1700
(
2011
).
34.
M.
Ghil
,
M. D.
Chekroun
, and
E.
Simonnet
, “
Climate dynamics and fluid mechanics: Natural variability and related uncertainties
,”
Physica D
237
,
2111
2126
(
2008
).
35.
M.
Annunziato
and
A.
Borzì
, “
A Fokker–Planck control framework for multidimensional stochastic processes
,”
J. Comput. Appl. Math.
237
,
487
507
(
2013
).
36.
J.
Covington
,
D.
Qi
, and
N.
Chen
, “Effective statistical control strategies for complex turbulent dynamical systems,”
Proc. Royal Soc. A: Math. Phys. Eng. Sci.
479
,
2279
(
2024
).
37.
A.
Köhl
and
J.
Willebrand
, “
An adjoint method for the assimilation of statistical characteristics into eddy-resolving ocean models
,”
Tellus A: Dyn. Meteorol. Oceanogr.
54
,
406
425
(
2002
).
38.
T.
Schneider
,
A. M.
Stuart
, and
J.-L.
Wu
, “
Learning stochastic closures using ensemble Kalman inversion
,”
Trans. Math. Appl.
5
,
tnab003
(
2021
).
39.
V.
Mons
,
Y.
Du
, and
T. A.
Zaki
, “
Ensemble-variational assimilation of statistical data in large-eddy simulation
,”
Phys. Rev. Fluids
6
,
104607
(
2021
).
40.
T.
Schneider
,
A. M.
Stuart
, and
J.-L.
Wu
, “
Ensemble Kalman inversion for sparse learning of dynamical systems from time-averaged data
,”
J. Comput. Phys.
470
,
111559
(
2022
).
41.
M.
Levine
and
A.
Stuart
, “
A framework for machine learning of model error in dynamical systems
,”
Commun. Am. Math. Soc.
2
,
283
344
(
2022
).
42.
E.
Bach
and
M.
Ghil
, “
A multi-model ensemble Kalman filter for data assimilation and forecasting
,”
J. Adv. Model. Earth Syst.
15
,
e2022MS003123
(
2023
).
43.
C. M.
Danforth
and
E.
Kalnay
, “
Using singular value decomposition to parameterize state-dependent model errors
,”
J. Atmos. Sci.
65
,
1467
1478
(
2008
).
44.
T.-C.
Chen
,
S. G.
Penny
,
J. S.
Whitaker
,
S.
Frolov
,
R.
Pincus
, and
S.
Tulich
, “
Correcting systematic and state-dependent errors in the NOAA FV3-GFS using neural networks
,”
J. Adv. Model. Earth Syst.
14
,
e2022MS003309
(
2022
).
45.
A.
Farchi
,
P.
Laloyaux
,
M.
Bonavita
, and
M.
Bocquet
, “
Using machine learning to correct model error in data assimilation and forecast applications
,”
Q. J. R. Meteorol. Soc.
147
,
3067
3084
(
2021
).
46.
S.
Ephrati
,
A.
Franken
,
E.
Luesink
, and
B.
Geurts
, “Data-assimilation closure for large-eddy simulation of quasi-geostrophic flow on the sphere,” arxiv:2312.12858 [physics] (2023).
47.
A.
Bain
and
D.
Crisan
,
Fundamentals of Stochastic Filtering
(Springer, New York, 2009).
48.
M.
Salgado
,
R.
Middleton
, and
G. C.
Goodwin
, “
Connection between continuous and discrete Riccati equations with applications to Kalman filtering
,”
IEEE Proc. D (Control Theory Appl.)
135
,
28
34
(
1988
).
49.
D.
Simon
,
Optimal State Estimation: Kalman, H , and Nonlinear Approaches
(
John Wiley & Sons, Ltd
,
2006
).
50.
Y.
Zhou
,
J.
Shi
, and
J.
Zhu
, “Nonparametric score estimators,” in Proceedings of the 37th International Conference on Machine Learning (PMLR, 2020), pp. 11513–11522.
51.
M. K.
Tippett
,
J. L.
Anderson
,
C. H.
Bishop
,
T. M.
Hamill
, and
J. S.
Whitaker
, “
Ensemble square root filters
,”
Monthly Weather Rev.
131
,
1485
1490
(
2003
).
52.
R.
Flamary
,
N.
Courty
,
A.
Gramfort
,
M. Z.
Alaya
,
A.
Boisbunon
,
S.
Chambon
,
L.
Chapel
,
A.
Corenflos
,
K.
Fatras
,
N.
Fournier
,
L.
Gautheron
,
N. T. H.
Gayraud
,
H.
Janati
,
A.
Rakotomamonjy
,
I.
Redko
,
A.
Rolet
,
A.
Schutz
,
V.
Seguy
,
D. J.
Sutherland
,
R.
Tavenard
,
A.
Tong
, and
T.
Vayer
, “
POT: Python Optimal Transport
,”
J. Mach. Learn. Res.
22
,
1
8
(
2021
).
53.
E.
Bach
, “
parasweep: A template-based utility for generating, dispatching, and post-processing of parameter sweeps
,”
SoftwareX
13
,
100631
(
2021
).
54.
A.-K.
Kassam
and
L. N.
Trefethen
, “
Fourth-order time-stepping for stiff PDEs
,”
SIAM J. Sci. Comput.
26
,
1214
1233
(
2005
).
55.
M.
Dashti
,
K. J. H.
Law
,
A. M.
Stuart
, and
J.
Voss
, “
MAP estimators and their consistency in Bayesian nonparametric inverse problems
,”
Inverse Probl.
29
,
095017
(
2013
).
56.
E. N.
Lorenz
, “
Deterministic nonperiodic flow
,”
J. Atmos. Sci.
20
,
130
141
(
1963
).
57.
E. N.
Lorenz
, “Predictability: A problem partly solved,” in Proceedings of a Seminar Held at ECMWF on Predictability, 4-8 September 1995 (ECMWF, Shinfield Park, Reading, 1996), Vol. 1, pp. 1–18.
58.
V. I.
Bogachev
,
Gaussian Measures
(American Mathematical Society, 1998).
59.
P. L.
Falb
, “
Infinite-dimensional filtering: The Kalman–Bucy filter in Hilbert space
,”
Inf. Control
11
,
102
137
(
1967
).
60.
R.
Curtain
, “
A survey of infinite-dimensional filtering
,”
SIAM Rev.
17
,
395
411
(
1975
).
You do not currently have access to this content.