The functional networks of the human brain exhibit the structural characteristics of a scale-free topology, and these neural networks are exposed to the electromagnetic environment. In this paper, we consider the effects of magnetic induction on synchronous activity in biological neural networks, and the magnetic effect is evaluated by the four-stable discrete memristor. Based on Rulkov neurons, a scale-free neural network model is established. Using the initial value and the strength of magnetic induction as control variables, numerical simulations are carried out. The research reveals that the scale-free neural network exhibits multiple coexisting behaviors, including resting state, period-1 bursting synchronization, asynchrony, and chimera states, which are dependent on the different initial values of the multi-stable discrete memristor. In addition, we observe that the strength of magnetic induction can either enhance or weaken the synchronization in the scale-free neural network when the parameters of Rulkov neurons in the network vary. This investigation is of significant importance in understanding the adaptability of organisms to their environment.

1.
D. R.
Chialvo
, “
Critical brain networks
,”
Phys. A: Stat. Mech. Appl.
340
(4),
756
765
(
2004
).
2.
C.
Chen
,
F.
Min
,
Y.
Zhang
, and
H.
Bao
, “
Relu-type hopfield neural network with analog hardware implementation
,”
Chaos, Solitons Fractals
167
,
113068
(
2023
).
3.
W.
Chen
,
J.
Jin
,
C.
Chen
,
F.
Yu
, and
C.
Wang
, “
A disturbance suppression zeroing neural network for robust synchronization of chaotic systems and its FPGA implementation
,”
Inter. J. Bifurcat. Chaos
32
,
2250210
(
2022
).
4.
J.
Jin
,
W.
Chen
,
C.
Chen
,
L.
Chen
,
Z.
Tang
,
L.
Chen
,
L.
Wu
, and
C.
Zhu
, “
A predefined fixed-time convergence znn and its applications to time-varying quadratic programming solving and dual-arm manipulator cooperative trajectory tracking
,”
IEEE Trans. Indus. Inform.
19
,
8691
8702
(
2023
).
5.
Y.
Li
,
Z.
Wei
,
W.
Zhang
,
M.
Perc
, and
R.
Repnik
, “
Bogdanov-takens singularity in the Hindmarsh–Rose neuron with time delay
,”
Appl. Math. Comput.
354
,
180
188
(
2019
).
6.
Y.
Li
,
L.
Xiao
,
Z.
Wei
, and
W.
Zhang
, “
Zero-hopf bifurcation analysis in an inertial two-neural system with delayed crespi function
,”
Euro. Phys. J. Special Top.
229
,
953
962
(
2020
).
7.
J.
Ma
, “
Biophysical neurons, energy, and synapse controllability: A review
,”
J. Zhejiang Univ.-Sci. A
24
,
109
129
(
2023
).
8.
G.
Chen
, “
Searching for best network topologies with optimal synchronizability: A brief review
,”
IEEE/CAA J. Auto. Sinica
9
,
573
577
(
2022
).
9.
C.
Shang
,
S.
He
,
K.
Rajagopal
,
H.
Wang
, and
K.
Sun
, “
Dynamics and chimera state in a neural network with discrete memristor coupling
,”
Euro. Phys. J. Special Top.
231
,
4065
4076
(
2022
).
10.
Y.
Xie
,
Y.
Xu
, and
J.
Ma
, “
Desynchronization and energy diversity between neurons
,”
Nonlinear. Dyn.
111
,
11521
11541
(
2023
).
11.
Q.
Wan
,
F.
Li
,
S.
Chen
, and
Q.
Yang
, “
Symmetric multi-scroll attractors in magnetized hopfield neural network under pulse controlled memristor and pulse current stimulation
,”
Chaos, Solitons Fractals
169
,
113259
(
2023
).
12.
Y.
Xu
,
H.-L.
Li
,
L.
Zhang
,
C.
Hu
, and
H.
Jiang
, “
Quasi-projective and Mittag–Leffler synchronization of discrete-time fractional-order complex-valued fuzzy neural networks
,”
Neural Proc. Lett.
55
,
6657
6677
(
2023
).
13.
Z.
Yao
,
K.
Sun
, and
S.
He
, “
Firing patterns in a fractional-order Fitzhugh–Nagumo neuron model
,”
Nonlinear. Dyn.
110
,
1807
1822
(
2022
).
14.
D.
Zhang
and
Y.
Qian
, “
Bursting oscillations in general coupled systems: A review
,”
Mathematics
11
,
1690
(
2023
).
15.
D. B.
Strukov
,
G. S.
Snider
,
D. R.
Stewart
, and
R. S.
Williams
, “
The missing memristor found
,”
Nature
453
,
80
83
(
2008
).
16.
O. A.
Almatroud
and
V.-T.
Pham
, “
Building fixed point-free maps with memristor
,”
Mathematics
11
,
1319
(
2023
).
17.
Z.
Njitacke Tabekoueng
,
S.
Shankar Muni
,
T.
Fonzin Fozin
,
G.
Dolvis Leutcho
, and
J.
Awrejcewicz
, “
Coexistence of infinitely many patterns and their control in heterogeneous coupled neurons through a multistable memristive synapse
,”
Chaos
32
,
053114
(
2022
).
18.
Z. T.
Njitacke
,
J.
Awrejcewicz
,
A. N. K.
Telem
,
T. F.
Fozin
, and
J.
Kengne
, “
Complex dynamics of coupled neurons through a memristive synapse: Extreme multistability and its control with selection of the desired state
,”
IEEE Trans. Circuits Syst. II: Express Briefs
70
,
791
795
(
2022
).
19.
Q.
Sun
,
S.
He
,
K.
Sun
, and
H.
Wang
, “
A novel hyperchaotic map with sine chaotification and discrete memristor
,”
Chin. Phys. B
31
,
120501
(
2022
).
20.
J.
Ramadoss
,
O. A.
Almatroud
,
S.
Momani
,
V.-T.
Pham
, and
V. P.
Thoai
, “
Discrete memristance and nonlinear term for designing memristive maps
,”
Symmetry
14
,
2110
(
2022
).
21.
F.
Yuan
,
G.
Xing
, and
Y.
Deng
, “
Flexible cascade and parallel operations of discrete memristor
,”
Chaos, Solitons Fractals
166
,
112888
(
2023
).
22.
L.
Ren
,
J.
Mou
,
S.
Banerjee
, and
Y.
Zhang
, “
A hyperchaotic map with a new discrete memristor model: Design, dynamical analysis, implementation and application
,”
Chaos, Solitons Fractals
167
,
113024
(
2023
).
23.
Z.
Deng
,
C.
Wang
,
H.
Lin
, and
Y.
Sun
, “
A memristive spiking neural network circuit with selective supervised attention algorithm
,”
IEEE Trans. Comput.-Aided Design Int. Circuits Syst.
42
(
8
),
2604
2617
(
2023
).
24.
T.
Ma
,
J.
Mou
,
H.
Yan
, and
Y.
Cao
, “
A new class of hopfield neural network with double memristive synapses and its DSP implementation
,”
Eur. Phys. J. Plus
137
(
10
),
1
19
(
2022
).
25.
L. K.
Kengne
,
S. S.
Muni
,
J. C.
Chedjou
, and
K.
Kyandoghere
, “
Various coexisting attractors, asymmetry analysis and multistability control in a 3D memristive jerk system
,”
Eur. Phys. J. Plus
137
,
848
(
2022
).
26.
H.
Li
,
C.
Li
, and
J.
Du
, “
Discretized locally active memristor and application in logarithmic map
,”
Nonlinear. Dyn.
111
,
2895
2915
(
2023
).
27.
H.
Li
,
C.
Li
, and
S.
He
, “
Locally active memristor with variable parameters and its oscillation circuit
,”
Inter. J. Bifurcat. Chaos
33
,
2350032
(
2023
).
28.
Z. T.
Njitacke
,
T. F.
Fozin
,
S. S.
Muni
,
J.
Awrejcewicz
, and
J.
Kengne
, “
Energy computation, infinitely coexisting patterns and their control from a Hindmarsh–Rose neuron with memristive autapse: Circuit implementation
,”
AEU-Inter. J. Electron. Commun.
155
,
154361
(
2022
).
29.
F.
Yu
,
W.
Zhang
,
X.
Xiao
,
W.
Yao
,
S.
Cai
,
J.
Zhang
,
C.
Wang
, and
Y.
Li
, “
Dynamic analysis and FPGA implementation of a new, simple 5D memristive hyperchaotic Sprott-c system
,”
Mathematics
11
,
701
(
2023
).
30.
F.
Yu
,
H.
Shen
,
Q.
Yu
,
X.
Kong
,
P. K.
Sharma
, and
S.
Cai
, “
Privacy protection of medical data based on multi-scroll memristive hopfield neural network
,”
IEEE Trans. Netw. Sci. Eng.
10
,
845
858
(
2022
).
31.
Q.
Lai
,
L.
Yang
, and
Y.
Liu
, “
Design and realization of discrete memristive hyperchaotic map with application in image encryption
,”
Chaos Solitons Fractals
165
,
112781
(
2022
).
32.
F.
Yu
,
S.
Xu
,
X.
Xiao
,
W.
Yao
,
Y.
Huang
,
S.
Cai
,
B.
Yin
, and
Y.
Li
, “
Dynamics analysis, FPGA realization and image encryption application of a 5D memristive exponential hyperchaotic system
,”
Integration
90
,
58
70
(
2023
).
33.
S.
Zhou
,
X.
Wang
,
Y.
Zhang
,
B.
Ge
,
M.
Wang
, and
S.
Gao
, “
A novel image encryption cryptosystem based on true random numbers and chaotic systems
,”
Multi. Syst.
28
,
95
112
(
2022
).
34.
C.
Chen
,
F.
Min
,
Y.
Zhang
, and
B.
Bao
, “
Memristive electromagnetic induction effects on hopfield neural network
,”
Nonlinear. Dyn.
106
,
2559
2576
(
2021
).
35.
Z.
Li
,
Z.
Guo
,
M.
Wang
, and
M.
Ma
, “
Firing activities induced by memristive autapse in Fitzhugh–Nagumo neuron with time delay
,”
AEU-Inter. J. Electron. Communicat.
142
,
153995
(
2021
).
36.
Q.
Lai
,
Z.
Wan
,
H.
Zhang
, and
G.
Chen
, “
Design and analysis of multiscroll memristive hopfield neural network with adjustable memductance and application to image encryption
,”
IEEE Trans. Neural Netw. Learn. Syst.
34
,
7824
7837
(
2023
).
37.
M.
Ma
,
K.
Xiong
,
Z.
Li
, and
S.
He
, “
Dynamical behavior of memristor-coupled heterogeneous discrete neural networks with synaptic crosstalk
,”
Chin. Phys. B
33
(
2
),
028706
(
2023
).
38.
J.
Sun
,
Y.
Wang
,
P.
Liu
,
S.
Wen
, and
Y.
Wang
, “
Memristor-based neural network circuit with multimode generalization and differentiation on Pavlov associative memory
,”
IEEE Trans. Cybernet.
53
,
3351
3362
(
2023
).
39.
S.
Bin
,
G.
Sun
, and
C.-C.
Chen
, “
Analysis of functional brain network based on electroencephalography and complex network
,”
Microsyst. Technol.
27
,
1525
1533
(
2021
).
40.
C.
Batista
,
A.
Batista
,
J.
De Pontes
,
R.
Viana
, and
S.
Lopes
, “
Chaotic phase synchronization in scale-free networks of bursting neurons
,”
Phys. Rev. E
76
,
016218
(
2007
).
41.
C.
Batista
,
A.
Batista
,
J.
De Pontes
,
S.
Lopes
, and
R.
Viana
, “
Bursting synchronization in scale-free networks
,”
Chaos, Solitons Fractals
41
,
2220
2225
(
2009
).
42.
C.
Batista
,
S. R.
Lopes
,
R. L.
Viana
, and
A. M.
Batista
, “
Delayed feedback control of bursting synchronization in a scale-free neuronal network
,”
Neural Netw.
23
,
114
124
(
2010
).
43.
Y.
Gu
and
J.
Sun
, “
Altering synchronizability by adding and deleting edges for scale-free networks
,”
Phys. A
388
,
3261
3267
(
2009
).
44.
Y.
Hao
,
Y.
Gong
,
L.
Wang
,
X.
Ma
, and
C.
Yang
, “
Single or multiple synchronization transitions in scale-free neuronal networks with electrical or chemical coupling
,”
Chaos, Solitons Fractals
44
,
260
268
(
2011
).
45.
A. S.
Reis
,
K. C.
Iarosz
,
F. A.
Ferrari
,
I. L.
Caldas
,
A. M.
Batista
, and
R. L.
Viana
, “
Bursting synchronization in neuronal assemblies of scale-free networks
,”
Chaos, Solitons Fractals
142
,
110395
(
2021
).
46.
Q.
Xu
,
Z.
Ju
,
S.
Ding
,
C.
Feng
,
M.
Chen
, and
B.
Bao
, “
Electromagnetic induction effects on electrical activity within a memristive Wilson neuron model
,”
Cog. Neurodyn.
16
,
1221
1231
(
2022
).
47.
Q.
Xu
,
T.
Liu
,
S.
Ding
,
H.
Bao
,
Z.
Li
, and
B.
Chen
, “
Extreme multistability and phase synchronization in a heterogeneous bi-neuron Rulkov network with memristive electromagnetic induction
,”
Cog. Neurodyn.
17
,
755
766
(
2023
).
48.
Z.
Wen
,
C.
Wang
,
Q.
Deng
, and
H.
Lin
, “
Regulating memristive neuronal dynamical properties via excitatory or inhibitory magnetic field coupling
,”
Nonlinear. Dyn.
110
,
3823
3835
(
2022
).
49.
H.
Lin
,
C.
Wang
,
L.
Cui
,
Y.
Sun
,
X.
Zhang
, and
W.
Yao
, “
Hyperchaotic memristive ring neural network and application in medical image encryption
,”
Nonlinear. Dyn.
110
,
841
855
(
2022
).
50.
S. S.
Muni
,
Z.
NJITACKE
,
C.
Feudjio
,
T.
Fozin
, and
J.
Awrejcewicz
, “
Route to chaos and chimera states in a network of memristive Hindmarsh–Rose neurons model with external excitation
,”
Chaos Theory Appl.
4
,
119
127
(
2022
).
51.
S. S.
Muni
,
H. O.
Fatoyinbo
, and
I.
Ghosh
, “
Dynamical effects of electromagnetic flux on chialvo neuron map: Nodal and network behaviors
,”
Inter. J. Bifurcat. Chaos
32
,
2230020
(
2022
).
52.
M.
Ma
,
Y.
Yang
,
Z.
Qiu
,
Y.
Peng
,
Y.
Sun
,
Z.
Li
, and
M.
Wang
, “
A locally active discrete memristor model and its application in a hyperchaotic map
,”
Nonlinear. Dyn.
107
,
2935
2949
(
2022
).
53.
A.-L.
Barabási
and
R.
Albert
, “
Emergence of scaling in random networks
,”
Science
286
(
5439
),
509
512
(
1999
).
54.
N. F.
Rulkov
, “
Regularization of synchronized chaotic bursts
,”
Phys. Rev. Lett.
86
,
183
(
2001
).
55.
Y.-M.
Lu
,
C.-H.
Wang
,
Q.-L.
Deng
, and
C.
Xu
, “
The dynamics of a memristor-based Rulkov neuron with fractional-order difference
,”
Chin. Phys. B
31
(
6
),
060502
(
2022
).
56.
M.
Ma
,
Y.
Lu
,
Z.
Li
,
Y.
Sun
, and
C.
Wang
, “
Multistability and phase synchronization of Rulkov neurons coupled with a locally active discrete memristor
,”
Fractal Fract.
7
,
82
(
2023
).
57.
M.
Ma
,
X.
Xie
,
Y.
Yang
,
L.
ZhiJun
, and
Y.
Sun
, “
Synchronization coexistence in a Rulkov neural network based on locally active discrete memristor
,”
Chin. Phys. B
32
,
058701
(
2023
).
58.
A.
Riehle
,
S.
Grün
,
M.
Diesmann
, and
A.
Aertsen
, “
Spike synchronization and rate modulation differentially involved in motor cortical function
,”
Science
278
,
1950
1953
(
1997
).
59.
M.
Steriade
,
D. A.
McCormick
, and
T. J.
Sejnowski
, “
Thalamocortical oscillations in the sleeping and aroused brain
,”
Science
262
,
679
685
(
1993
).
60.
R. C.
Elson
,
A. I.
Selverston
,
R.
Huerta
,
N. F.
Rulkov
,
M. I.
Rabinovich
, and
H. D. I.
Abarbanel
, “
Synchronous behavior of two coupled biological neurons
,”
Phys. Rev. Lett.
81
,
5692
5695
(
1998
).
61.
P.
Jiruska
,
J.
Csicsvari
,
A. D.
Powell
,
J. E.
Fox
,
W.-C.
Chang
,
M.
Vreugdenhil
,
X.
Li
,
M.
Palus
,
A. F.
Bujan
,
R. W.
Dearden
, and
J. G. R.
Jefferys
, “
High-frequency network activity, global increase in neuronal activity, and synchrony expansion precede epileptic seizures in vitro
,”
J. Neurosci.
30
,
5690
5701
(
2010
).
62.
J.
Lu
,
X.
Xie
,
Y.
Lu
,
Y.
Wu
,
C.
Li
, and
M.
Ma
,
Dynamical behaviors in discrete memristor-coupled small-world neuronal networks
,”
Chin. Phys. B
33
,
4
(
2023
).
You do not currently have access to this content.