A phenomenon of emergence of stability islands in phase space is reported for two periodic potentials with tiling symmetries, one square and the other hexagonal, inspired by bidimensional Hamiltonian models of optical lattices. The structures found, here termed as island myriads, resemble web-tori with notable fractality and arise at energy levels reaching that of unstable equilibria. In general, the myriad is an arrangement of concentric island chains with properties relying on the translational and rotational symmetries of the potential functions. In the square system, orbits within the myriad come in isochronous pairs and can have different periodic closure, either returning to their initial position or jumping to identical sites in neighbor cells of the lattice, therefore impacting transport properties. As seen when compared to a more generic case, i.e., the rectangular lattice, the breaking of square symmetry disrupts the myriad even for small deviations from its equilateral configuration. For the hexagonal case, the myriad was found but in attenuated form, mostly due to extra instabilities in the potential surface that prevent the stabilization of orbits forming the chains.

1.
G.
Contopoulos
,
Order and Chaos in Dynamical Astronomy
(
Springer
,
2002
).
2.
G. H.
Walker
and
J.
Ford
, “
Amplitude instability and ergodic behavior for conservative nonlinear oscillator systems
,”
Phys. Rev.
188
(
1
),
416
432
(
1969
).
3.
D.
del Castillo-Negrete
,
J. M.
Green
, and
P. J.
Morrison
, “
Area preserving nontwist maps: Periodic orbits and transition to chaos
,”
Physica D
91
(
1
),
1
23
(
1996
).
4.
L. E.
Reichl
,
The Transition to Chaos in Conservative Classical Systems
(
Springer-Verlag
,
New York
,
1992
).
5.
G. M.
Zaslavsky
,
R. Z.
Sagdeev
,
D. K.
Chaikovsky
, and
A. A.
Chernikov
, “
Chaos and two-dimensional random walk in periodic and quasiperiodic fields
,”
Sov. Phys. JETP
68
(
5
),
995
1000
(
1989
).
6.
G. M.
Zaslavsky
,
Hamiltonian Chaos and Fractional Dynamics
(
Oxford University Press
,
2005
).
7.
A. A.
Chernikov
,
M. Y.
Natenzon
,
B. A.
Petrovichev
,
R. Z.
Sagdeev
, and
G. M.
Zaslavsky
,
Strong changing of adiabatic invariants, KAM-tori and web-tori
,
Phys. Lett. A
129
(
7
),
377
380
(
1988
).
8.
M. J.
Lazarotto
,
I. L.
Caldas
, and
Y.
Elskens
, “
Diffusion transitions in a 2D periodic lattice
,”
Commun. Nonlinear Sci. Numer. Simul.
112
,
106525
(
2022
).
9.
I.
Bloch
, “
Ultracold quantum gases in optical lattices
,”
Nat. Phys.
1
,
23
30
(
2005
).
10.
R. G.
Kleva
and
J. F.
Drake
, “
Stochastic ExB particle transport
,”
Phys. Fluids
27
(
7
),
1686
1698
(
1984
).
11.
D. S.
Sholl
and
R. T.
Skodje
, “
Diffusion of xenon on a platinum surface: The influence of correlated flights
,”
Physica D
71
,
168
184
(
1994
).
12.
R.
Grimm
,
M.
Weidemüller
, and
Y. B.
Ovchinnikov
, “
Optical dipole traps for neutral atoms
,”
Adv. At., Mol., Opt. Phys.
42
,
95
170
(
2000
).
13.
E.
Horsley
,
S.
Koppell
, and
L. E.
Reichl
, “
Chaotic dynamics in a two-dimensional optical lattice
,”
Phys. Rev. E
89
,
012917
(
2014
).
14.
M. D.
Porter
,
A.
Barr
,
A.
Barr
, and
L. E.
Reichl
, “
Chaos in the band structure of a soft sinai lattice
,”
Phys. Rev. E
95
,
052213
(
2017
).
15.
C.
Skokos
,
T.
Bountis
,
C. G.
Antonopoulos
, and
M. N.
Vrahatis
, “
Detecting order and chaos in hamiltonian systems by the SALI method
,”
J. Phys. A Math. Gen.
37
,
6269
6284
(
2004
).
16.
G. A.
Gottwald
,
C. H.
Skokos
, and
J.
Laskar
,
Chaos Detection and Predictability
(
Springer-Verlag
,
Berlin
,
2015
).
17.
M. C.
de Sousa
,
I. L.
Caldas
,
A. M.
Ozorio de Almeida
,
F. B.
Rizzato
, and
R.
Pakter
, “
Alternate islands of multiple isochronous chains in wave-particle interactions
,”
Phys. Rev. E
88
,
064901
(
2013
).
18.
B. B.
Leal
,
I. L.
Caldas
,
M. C.
de Sousa
,
R. L.
Viana
, and
A. M.
Ozorio de Almeida
, “Isochronous island bifurcations driven by resonant magnetic perturbations in tokamaks,” arXiv:2308.00810 (2023).
19.
P. J.
Morrison
and
A.
Wurm
, “
Nontwist maps
,”
Scholarpedia
4
(
9
),
3551
(
2009
).
20.
C.
Baesens
,
Y.-C.
Chen
, and
R. S.
Mackay
, “
Abrupt bifurcations in chaotic scattering: View from the anti-integrable limit
,”
Nonlinearity
26
,
2703
2730
(
2013
).
You do not currently have access to this content.