The rapid growth of large datasets has led to a demand for novel approaches to extract valuable insights from intricate information. Graph theory provides a natural framework to model these relationships, but standard graphs may not capture the complex interdependence between components. Hypergraphs are a powerful extension of graphs that can represent higher-order relationships in the data. In this paper, we propose a novel approach to studying the structure of a dataset using hypergraph theory and a filtration method. Our method involves building a set of hypergraphs based on a variable distance parameter, enabling us to infer qualitative and quantitative information about the data structure. We apply our method to various sets of points, dynamical systems, signal models, and real electrophysiological data. Our results show that the proposed method can effectively differentiate between varying datasets, demonstrating its potential utility in a range of scientific applications.

1.
C.
Berge
and
C.
Berge
,
Graphes et Hypergraphes. 1970
(
Dunod
,
Paris
,
1967
).
2.
C.
Berge
,
Graphs and Hypergraphs
(
Elsevier
,
1973
).
3.
S.
Zhang
,
Z.
Ding
, and
S.
Cui
, “
Introducing hypergraph signal processing: Theoretical foundation and practical applications
,”
IEEE Internet Things J.
7
(
1
),
639
660
(
2019
).
4.
S.
Barbarossa
and
M.
Tsitsvero
, “An introduction to hypergraph signal processing,” in 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (IEEE, 2016), pp. 6425–6429.
5.
O. N.
Temkin
,
A. V.
Zeigarnik
, and
D. G.
Bonchev
,
Chemical Reaction Networks: A Graph-Theoretical Approach
(
CRC Press
,
2020
).
6.
E. V.
Konstantinova
and
V. A.
Skorobogatov
, “
Application of hypergraph theory in chemistry
,”
Discrete Math.
235
(
1-3
),
365
383
(
2001
).
7.
S.
Feng
,
E.
Heath
,
B.
Jefferson
,
C.
Joslyn
et al., “
Hypergraph models of biological networks to identify genes critical to pathogenic viral response
,”
BMC Bioinf.
22
(
1
),
1
21
(
2021
).
8.
S.
Klamt
,
U.-U.
Haus
, and
F.
Theis
, “
Hypergraphs and cellular networks
,”
PLoS Comput. Biol.
5
(
5
),
e1000385
(
2009
).
9.
A.
Dutta Choudhury
and
A. S.
Chowdhury
, “Champs: Cardiac health hypergraph analysis using multimodal physiological signals,” in 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (IEEE, 2019), pp. 4640–4645.
10.
Y.
Zhu
,
X.
Zhu
,
M.
Kim
,
J.
Yan
,
D.
Kaufer
, and
G.
Wu
, “
Dynamic hyper-graph inference framework for computer-assisted diagnosis of neurodegenerative diseases
,”
IEEE Transactions on Medical Imaging
38
(
2
),
608
616
(
2018
).
11.
J.
Guo
,
H.
Li
,
X.
Sun
,
L.
Qi
,
H.
Qiao
,
Y.
Pan
,
J.
Xiang
, and
R.
Ji
, “
Detecting high frequency oscillations for stereoelectroencephalography in epilepsy via hypergraph learning
,”
IEEE Trans. Neural Syst. Rehab. Eng.
29
,
587
596
(
2021
).
12.
J.
Yu
,
D.
Tao
, and
M.
Wang
, “
Adaptive hypergraph learning and its application in image classification
,”
IEEE Trans. Image Process.
21
(
7
),
3262
3272
(
2012
).
13.
M. R.
Gauthama Raman
,
N.
Somu
,
K.
Kirthivasan
,
R.
Liscano
, and
V. S.
Sriram
, “
An efficient intrusion detection system based on hypergraph-genetic algorithm for parameter optimization and feature selection in support vector machine
,”
Knowledge-Based Syst.
134
,
1
12
(
2017
).
14.
X.
Ouvrard
, “Hypergraphs: An introduction and review,” arXiv:2002.05014 (2020).
15.
Y.
Kuramoto
,
Chemical Turbulence
(
Springer
,
1984
).
16.
S. H.
Strogatz
, “
From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators
,”
Phys. D
143
(
1-4
),
1
20
(
2000
).
17.
J. A.
Acebrón
,
L. L.
Bonilla
,
C. J.
Vicente
,
F.
Ritort
, and
R.
Spigler
, “
The Kuramoto model: A simple paradigm for synchronization phenomena
,”
Rev. Mod. Phys.
77
(
1
),
137
(
2005
).
18.
F. A.
Rodrigues
,
T. K. D. M.
Peron
,
J.
Ji
, and
P.
Kurths
, “
The Kuramoto model in complex networks
,”
Phys. Rep.
610
,
1
98
(
2016
).
19.
S.
Strogatz
,
Sync: The Emerging Science of Spontaneous Order
(
Theia
,
2004
).
20.
O.
Mondragón-Palomino
,
T.
Danino
,
J.
Selimkhanov
,
L.
Tsimring
, and
J.
Hasty
, “
Entrainment of a population of synthetic genetic oscillators
,”
Science
333
(
6047
),
1315
1319
(
2011
).
21.
J. L.
Perez Velazquez
,
L.
Garcia Dominguez
,
V.
Nenadovic
, and
R. A.
Wennberg
, “
Experimental observation of increased fluctuations in an order parameter before epochs of extended brain synchronization
,”
J. Biol. Phys.
37
(1),
141
152
(
2011
).
22.
C. J.
Stam
,
G.
Nolte
, and
A.
Daffertshofer
, “
Phase lag index: Assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources
,”
Human Brain Mapping
28
(
11
),
1178
1193
(
2007
).

Supplementary Material

You do not currently have access to this content.