In this paper, the Nth Darboux transformations for the ( 2 + 1 )-dimensional generalized variable-coefficient Koretweg–de Vries (gvcKdV) equation are proposed. By using the Lamé function method, the generalized Lamé-type solutions for the linear spectral problem associated with the gvcKdV equation with the static and traveling Weierstrass elliptic -function potentials are derived, respectively. Then, the nonlinear wave solutions for the gvcKdV equation on the static and traveling Weierstrass elliptic -function periodic backgrounds under some constraint conditions are obtained, respectively, whose evolutions and dynamical properties are also discussed. The results show that the degenerate solutions on the periodic background can be obtained by taking the limits of the half-periods ω 1 , ω 2 of ( x ), and the evolution curves of nonlinear wave solutions on the periodic background are determined by the coefficients of the gvcKdV equations.

1.
A. D.
Craik
,
Wave Interactions and Fluid Flows
(
Cambridge University Press
,
London
,
1988
).
2.
A.
Hasegawa
,
Optical Soliton Theory and its Applications in Communication
(
Springer
,
Berlin
,
2002
).
3.
B. A.
Malomed
, “
Nonlinear optics: Symmetry breaking in laser cavities
,”
Nat. Photonics
9
(
5
),
287
(
2015
).
4.
L.
Pitaevskii
and
S.
Stringari
,
Bose-Einstein Condensation and Superfluidity
(
Oxford University Press
,
Oxford
,
2016
).
5.
H.
Bailung
,
S. K.
Sharma
, and
Y.
Nakamura
, “
Observation of Peregrine solitons in a multicomponent plasma with negative ions
,”
Phys. Rev. Lett.
107
(
25
),
255005
(
2011
).
6.
P. A.
Madsen
,
H. B.
Bingham
, and
H.
Liu
, “
A new Boussinesq method for fully nonlinear waves from shallow to deep water
,”
J. Fluid Mech.
462
,
1
30
(
2002
).
7.
Z. Y.
Yan
, “
Vector financial rogue waves
,”
Phys. Lett. A
375
(
48
),
4274
4279
(
2011
).
8.
R.
Hirota
,
Direct Methods in Soliton Theory
(
Springer
,
Berlin
,
2004
).
9.
M.
Boiti
,
F.
Pempinelli
,
A. K.
Pogrebkov
, and
B.
Prinari
, “
Inverse scattering theory of the heat equation for a perturbed one-soliton potential
,”
J. Math. Phys.
43
(
2
),
1044
1062
(
2002
).
10.
A.
Ganguly
and
A.
Das
, “
Generalized Korteweg-de Vries equation induced from position-dependent effective mass quantum models and mass-deformed soliton solution through inverse scattering transform
,”
J. Math. Phys.
55
(
11
),
112102
(
2014
).
11.
G. Q.
Zhang
and
Z. Y.
Yan
, “
Inverse scattering transforms and soliton solutions of focusing and defocusing nonlocal mKdV equations with non-zero boundary conditions
,”
Physica D
402
,
132170
(
2020
).
12.
C.
Rogers
and
W. K.
Schief
,
Bäcklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory
(
Cambridge University Press
,
Cambridge
,
2002
).
13.
J. M.
Tu
,
S. F.
Tian
,
M. J.
Xu
,
X. Q.
Song
, and
T. T.
Zhang
, “
Bäcklund transformation, infinite conservation laws and periodic wave solutions of a generalized ( 3 + 1 )-dimensional nonlinear wave in liquid with gas bubbles
,”
Nonlinear Dyn.
83
,
1199
1215
(
2016
).
14.
V. B.
Matveev
and
M. A.
Salle
,
Darboux Transformation and Solitons
(
Springer-Verlag
,
Berlin
,
1991
).
15.
X. Y.
Wen
,
Y. Q.
Yang
, and
Z. Y.
Yan
, “
Generalized perturbation (n, M)-fold Darboux transformations and multi-rogue-wave structures for the modified self-steepening nonlinear Schrödinger equation
,”
Phys. Rev. E
92
,
012917
(
2015
).
16.
X. Y.
Wen
,
Z. Y.
Yan
, and
G. Q.
Zhang
, “
Nonlinear self-dual network equations: Modulation instability, interactions of higher-order discrete vector rational solitons and dynamical behaviours
,”
Proc. R. Soc. A
476
,
20200512
(
2020
).
17.
F.
Gesztesy
and
H.
Holden
,
Soliton Equations and their Algebro-Geometric Solutions: Volume I, ( 1 + 1 )-Dimensional Continuous Models
(
Cambridge University Press
,
Cambridge
,
2003
).
18.
F.
Gesztesy
and
H.
Holden
,
Soliton Equations and their Algebro-Geometric Solutions: Volume II, ( 1 + 1 )-Dimensional Continuous Models
(
Cambridge University Press
,
Cambridge
,
2008
).
19.
J. C.
Pu
and
Y.
Chen
, “
Data-driven forward-inverse problems for Yajima-Oikawa system using deep learning with parameter regularization
,”
Commun. Nonlinear Sci. Numer. Simul.
118
,
107051
(
2023
).
20.
Z. J.
Zhou
,
L.
Wang
, and
Z. Y.
Yan
, “
Deep neural networks learning forward and inverse problems of two-dimensional nonlinear wave equations with rational solitons
,”
Comput. Math. Appl.
151
,
164
171
(
2023
).
21.
J. H.
Li
,
J. C.
Chen
, and
B.
Li
, “
Gradient-optimized physics-informed neural networks (GOPINNs): A deep learning method for solving the complex modified KdV equation
,”
Nonlinear Dyn.
107
,
781
792
(
2022
).
22.
C. W.
Cao
and
X. G.
Geng
, “
C Neumann and Bargmann systems associated with the coupled KdV soliton hierarchy
,”
J. Phys. A: Math. Gen.
23
(
18
),
4117
(
1990
).
23.
J. B.
Chen
and
D. E.
Pelinovsky
, “
Rogue periodic waves of the focusing nonlinear Schrödinger equation
,”
Proc. R. Soc. A: Math. Phys.
474
(
2210
),
20170814
(
2018
).
24.
J. B.
Chen
and
R. S.
Zhang
, “
The complex Hamiltonian systems and quasi-periodic solutions in the derivative nonlinear Schrödinger equations
,”
Stud. Appl. Math.
145
(
2
),
153
178
(
2020
).
25.
J. B.
Chen
and
D. E.
Pelinovsky
, “
Rogue waves on the background of periodic standing waves in the derivative nonlinear Schrödinger equation
,”
Phys. Rev. E
103
(
6
),
062206
(
2021
).
26.
J. B.
Chen
and
D. E.
Pelinovsky
, “
Rogue periodic waves of the modified KdV equation
,”
Nonlinearity
31
(
5
),
1955
(
2018
).
27.
J. B.
Chen
and
D. E.
Pelinovsky
, “
Periodic travelling waves of the modified KdV equation and rogue waves on the periodic background
,”
J. Nonlinear Sci.
29
(
6
),
2797
2843
(
2019
).
28.
H. Q.
Zhang
,
F.
Chen
, and
Z. J.
Pei
, “
Rogue waves of the fifth-order Ito equation on the general periodic travelling wave solutions background
,”
Nonlinear Dyn.
103
,
1023
1033
(
2021
).
29.
H. Q.
Zhang
and
F.
Chen
, “
Rogue waves for the fourth-order nonlinear Schrödinger equation on the periodic background
,”
Chaos
31
(
2
),
023129
(
2021
).
30.
R. M.
Li
and
X. G.
Geng
, “
Rogue periodic waves of the sine-Gordon equation
,”
Appl. Math. Lett.
102
,
106147
(
2020
).
31.
R. M.
Li
and
X. G.
Geng
, “
Rogue waves and breathers of the derivative Yajima-Oikawa long wave-short wave equations on theta-function backgrounds
,”
J. Math. Anal. Appl.
527
(
1
),
127399
(
2023
).
32.
X. G.
Geng
,
R. M.
Li
, and
B.
Xue
, “
A vector Geng-Li model: New nonlinear phenomena and breathers on periodic background waves
,”
Physica D
434
,
133270
(
2022
).
33.
R. M.
Li
,
J. R.
Geng
, and
X. G.
Geng
, “
Rogue-wave and breather solutions of the Fokas-Lenells equation on theta-function backgrounds
,”
Appl. Math. Lett.
142
,
108661
(
2023
).
34.
D. J.
Kedziora
,
A.
Ankiewicz
, and
N.
Akhmediev
, “
Rogue waves and solitons on a cnoidal background
,”
Eur. Phys. J. Spec. Top.
223
(
1
),
43
62
(
2014
).
35.
S. A.
Chin
,
O. A.
Ashour
,
S. N.
Nikolić
, and
M. R.
Belić
, “
Peak-height formula for higher-order breathers of the nonlinear Schrödinger equation on nonuniform backgrounds
,”
Phys. Rev. E
95
(
1
),
012211
(
2017
).
36.
S. Y.
Lou
,
X. P.
Cheng
, and
X. Y.
Tang
, “
Dressed dark solitons of the defocusing nonlinear Schrödinger equation
,”
Chin. Phys. Lett.
31
(
7
),
070201
(
2014
).
37.
J.
Lin
,
X. W.
Jin
,
X. L.
Gao
, and
S. Y.
Lou
, “
Solitons on a periodic wave background of the modified KdV-Sine-Gordon equation
,”
Commun. Theor. Phys.
70
(
2
),
119
(
2018
).
38.
B. F.
Feng
,
L. M.
Ling
, and
D. A.
Takahashi
, “
Multi-breather and high-order rogue waves for the nonlinear Schrödinger equation on the elliptic function background
,”
Stud. Appl. Math.
144
(
1
),
46
101
(
2020
).
39.
W. Q.
Peng
,
J. C.
Pu
, and
Y.
Chen
, “
PINN deep learning method for the Chen-Lee-Liu equation: Rogue wave on the periodic background
,”
Commun. Nonlinear Sci.
105
,
106067
(
2022
).
40.
Y. Q.
Yang
,
H. H.
Dong
, and
Y.
Chen
, “
Darboux-Bäcklund transformation and localized excitation on the periodic wave background for the nonlinear Schrödinger equation
,”
Wave Motion
106
,
102787
(
2021
).
41.
R. E.
Davis
and
A.
Acrivos
, “
Solitary internal waves in deep water
,”
J. Fluid Mech.
29
,
593
607
(
1967
).
42.
D. M.
Farmer
and
J. D.
Smith
, “
Tidal interaction of stratified flow with a sill in Knight Inlet
,”
Deep-Sea Res. A
27
,
239
254
(
1980
).
43.
G.
Xu
,
A.
Chabchoub
,
D. E.
Pelinovsky
, and
B.
Kibler
, “
Observation of modulation instability and rogue breathers on stationary periodic waves
,”
Phys. Rev. Res.
2
(
3
),
033528
(
2020
).
44.
J. L.
Shultz
and
G. J.
Salamo
, “
Experimental observation of the continuous pulse-train soliton solution to the Maxwell-Bloch equations
,”
Phys. Rev. Lett.
78
(
5
),
855
(
1997
).
45.
C.
Mo
,
J.
Singh
,
J. R.
Raney
, and
P. K.
Purohit
, “
Cnoidal wave propagation in an elastic metamaterial
,”
Phys. Rev. E
100
(
1
),
013001
(
2019
).
46.
Z. Y.
Yan
and
C. Q.
Dai
, “
Optical rogue waves in the generalized inhomogeneous higher-order nonlinear Schrödinger equation with modulating coefficients
,”
J. Opt.
15
,
064012
(
2013
).
47.
Y. Q.
Yang
,
X.
Wang
, and
Z. Y.
Yan
, “
Optical temporal rogue waves in the generalized inhomogeneous nonlinear Schrödinger equation with varying higher-order even and odd terms
,”
Nonlinear Dyn.
81
,
833
842
(
2015
).
48.
Y. Z.
Peng
, “
A new ( 2 + 1 )-dimensional KdV equation and its localized structures
,”
Commun. Theor. Phys.
54
(
5
),
863
(
2010
).
49.
K.
Toda
and
S. J.
Yu
, “
The investigation into the Schwarz-Korteweg-de Vries equation and the Schwarz derivative in ( 2 + 1 ) dimensions
,”
J. Math. Phys.
41
(
7
),
4747
4751
(
2000
).
50.
Y.
Wang
and
Y.
Chen
, “
Binary Bell polynomial manipulations on the integrability of a generalized ( 2 + 1 )-dimensional Korteweg-de Vries equation
,”
J. Math. Anal. Appl.
400
(
2
),
624
634
(
2013
).
51.
J. C.
Pu
and
Y.
Chen
, “
Integrability and exact solutions of the ( 2 + 1 )-dimensional KdV equation with Bell polynomials approach
,”
Acta Math. Appl. Sin-E
38
(
4
),
861
881
(
2022
).
52.
A. M.
Wazwaz
, “
A new ( 2 + 1 )-dimensional Korteweg-de Vries equation and its extension to a new ( 3 + 1 )-dimensional Kadomtsev-Petviashvili equation
,”
Phys. Scr.
84
(
3
),
035010
(
2011
).
53.
Z.
Zhao
and
B.
Han
, “
The Riemann-Bäcklund method to a quasiperiodic wave solvable generalized variable coefficient ( 2 + 1 )-dimensional KdV equation
,”
Nonlinear Dyn.
87
,
2661
2676
(
2017
).
54.
X.
,
F.
Lin
, and
F.
Qi
, “
Analytical study on a two-dimensional Korteweg-de Vries model with bilinear representation, Bäcklund transformation and soliton solutions
,”
Appl. Math. Model.
39
(
12
),
3221
3226
(
2015
).
55.
J. C.
Chen
and
Z. Y.
Ma
, “
Consistent Riccati expansion solvability and soliton-cnoidal wave interaction solution of a ( 2 + 1 )-dimensional Korteweg-de Vries equation
,”
Appl. Math. Lett.
64
,
87
93
(
2017
).
56.
G.
Pastras
,
The Weierstrass Elliptic Function and Applications in Classical and Quantum Mechanics: A Primer for Advanced Undergraduates
(
Springer Nature
,
Berlin
,
2020
).
57.
I. M.
Krichever
, “
Elliptic solutions of nonlinear integrable equations and related topics
,”
Acta Appl. Math.
36
,
7
25
(
1994
).
58.
Y. V.
Brezhnev
, “
Elliptic solitons and Gröbner bases
,”
J. Math. Phys.
45
(
2
),
696
712
(
2004
).
59.
X.
Li
and
D. J.
Zhang
, “
Elliptic soliton solutions: τ functions, vertex operators and bilinear identities
,”
J. Nonlinear Sci.
32
,
70
(
2020
).
60.
F. W.
Nijhoff
,
Y. Y.
Sun
, and
D. J.
Zhang
, “
Elliptic solutions of Boussinesq type lattice equations and the elliptic Nth root of unity
,”
Commun. Math. Phys.
399
,
599
650
(
2023
).
61.
F.
Gesztesy
and
R.
Weikard
, “
Elliptic algebro-geometric solutions of the KdV and AKNS hierarchies-an analytic approach
,”
Bull. Amer. Math. Soc.
35
,
271
317
(
1998
).
62.
V. E.
Zakharov
, “
Description of the n-orthogonal curvilinear coordinate systems and Hamiltonian integrable systems of hydrodynamic type, I: Integration of the Lamé equations
,”
Duke Math. J.
94
(
1
),
103
139
(
1998
).
63.
J. C.
Eilbeck
,
V. Z.
Enolskii
, and
E.
Previato
, “
Varieties of elliptic solitons
,”
J. Phys. A: Math. Gen.
34
,
2215
2227
(
2001
).
64.
V. B.
Matveev
and
A. O.
Smirnov
, “
Elliptic solitons and “Freak waves”
,”
St. Petersburg Math. J.
33
(
3
),
523
551
(
2022
).
65.
Y. V.
Brezhnev
, “
Elliptic solitons with free constants and their isospectral deformations
,”
Rep. Math. Phys.
48
(
1–2
),
39
46
(
2001
).
66.
Y. Y.
Sun
and
W. Y.
Sun
, “
An update of a Bäcklund transformation and its applications to the Boussinesq system
,”
Appl. Math. Comput.
421
,
126964
(
2022
).
67.
D.
Rudneva
and
A.
Zabrodin
, “
Dynamics of poles of elliptic solutions to the BKP equation
,”
J. Phys. A: Math. Theor.
53
(
7
),
075202
(
2020
).
68.
W. Y.
Sun
and
Y. Y.
Sun
, “
The degenerate breather solutions for the Boussinesq equation
,”
Appl. Math. Lett.
128
,
107884
(
2022
).
You do not currently have access to this content.