In this article, we propose a numerical model based on the equation to simulate the dynamics of a front inside a microchannel that features an imperfection at a sidewall to different flow rates. The micro-front displays pinning–depinning phenomena without damped oscillations in the aftermath. To model this behavior, we propose a model with a localized external force and a damping coefficient. Numerical simulations with a constant damping coefficient show that the front displays pinning–depinning phenomena showing damped oscillations once the imperfection is overcome. Replacing the constant damping coefficient with a parabolic spatial function, we reproduce accurately the experimental front–defect interaction.
REFERENCES
1.
V.
Ganesan
and H.
Brenner
, “Dynamics of two-phase fluid interfaces in random porous media
,” Phys. Rev. Lett.
81
, 578
(1998
). 2.
A. T.
Paxson
and K. K.
Varanasi
, “Self-similarity of contact line depinning from textured surfaces
,” Nat. Commun.
4
, 1
–8
(2013
). 3.
D. D.
Agonafer
, H.
Lee
, P. A.
Vasquez
, Y.
Won
, K. W.
Jung
, S.
Lingamneni
, B.
Ma
, L.
Shan
, S.
Shuai
, Z.
Du
, and T.
Maitra
, “Porous micropillar structures for retaining low surface tension liquids
,” J. Colloid Interface Sci.
514
, 316
–327
(2018
). 4.
L.
Ponson
, “Depinning transition in the failure of inhomogeneous brittle materials
,” Phys. Rev. Lett.
103
, 055501
(2009
). 5.
Y.
Wang
, H.
Xu
, W.
Yu
, B.
Bai
, X.
Song
, and J.
Zhang
, “Surfactant induced reservoir wettability alteration: Recent theoretical and experimental advances in enhanced oil recovery
,” Pet. Sci.
8
, 463
–476
(2011
). 6.
F.
Campo-Cortés
, G.
Riboux
, and J. M.
Gordillo
, “The effect of contact line pinning favors the mass production of monodisperse microbubbles
,” Microfluid. Nanofluid.
20
, 21
(2016
).7.
F.-C.
Wang
and H.-A.
Wu
, “Pinning and depinning mechanism of the contact line during evaporation of nano-droplets sessile on textured surfaces
,” Soft Matter
9
, 5703
–5709
(2013
). 8.
W.-Z.
Yuan
and L.-Z.
Zhang
, “Pinning–depinning mechanisms of the contact line during evaporation of microdroplets on rough surfaces: A lattice Boltzmann simulation
,” Langmuir
34
, 7906
–7915
(2018
). 9.
L.
Hu
, Y.
Huang
, W.
Chen
, X.
Fu
, and H.
Xie
, “Pinning effects of wettability contrast on pendant drops on chemically patterned surfaces
,” Langmuir
32
, 11780
–11788
(2016
). 10.
K.
Kurogi
, H.
Yan
, and K.
Tsujii
, “Importance of pinning effect of wetting in super water-repellent surfaces
,” Colloids Surf. A: Physicochem. Eng. Asp.
317
, 592
–597
(2008
). 11.
J.
Wu
, J.
Xia
, W.
Lei
, and B.-P.
Wang
, “Advanced understanding of stickiness on superhydrophobic surfaces
,” Sci. Rep.
3
, 3268
(2013
).12.
E.
Gogolides
, K.
Ellinas
, and A.
Tserepi
, “Hierarchical micro and nano structured, hydrophilic, superhydrophobic and superoleophobic surfaces incorporated in microfluidics, microarrays and lab on chip microsystems
,” Microelectron. Eng.
132
, 135
–155
(2015
). 13.
M. S.
Sadullah
, J. R.
Panter
, and H.
Kusumaatmaja
, “Factors controlling the pinning force of liquid droplets on liquid infused surfaces
,” Soft Matter
16
, 8114
–8121
(2020
). 14.
M.
Queralt-Martín
, M.
Pradas
, R.
Rodríguez-Trujillo
, M.
Arundell
, E. C.
Poiré
, and A.
Hernández-Machado
, “Pinning and avalanches in hydrophobic microchannels
,” Phys. Rev. Lett.
106
, 194501
(2011
). 15.
J.
Atencia
and D. J.
Beebe
, “Controlled microfluidic interfaces
,” Nature
437
, 648
–655
(2005
). 16.
A.
Javadi
, M.
Habibi
, F. S.
Taheri
, S.
Moulinet
, and D.
Bonn
, “Effect of wetting on capillary pumping in microchannels
,” Sci. Rep.
3
, 1
–6
(2013
). 17.
N.
Ibrahim-Rassoul
, E.-K.
Si-Ahmed
, A.
Serir
, A.
Kessi
, J.
Legrand
, and N.
Djilali
, “Investigation of two-phase flow in a hydrophobic fuel-cell micro-channel
,” Energies
12
, 2061
(2019
). 18.
P. E.
Theodorakis
, A.
Amirfazli
, B.
Hu
, and Z.
Che
, “Droplet control based on pinning and substrate wettability
,” Langmuir
37
, 4248
–4255
(2021
). 19.
J.
Wang
, Q.
Yang
, M.
Wang
, C.
Wang
, and L.
Jiang
, “Rose petals with a novel and steady air bubble pinning effect in aqueous media
,” Soft Matter
8
, 2261
–2266
(2012
). 20.
C.-K.
Tung
, O.
Krupa
, E.
Apaydin
, J.-J.
Liou
, A.
Diaz-Santana
, B. J.
Kim
, and M.
Wu
, “A contact line pinning based microfluidic platform for modelling physiological flows
,” Lab Chip
13
, 3876
–3885
(2013
). 21.
A.
Curtis
, J. J.
Cheng
, and E. E.
Hui
, “Cell patterning by surface tension pinning in microfluidic channels
,” Biomicrofluidics
14
, 024102
(2020
). 22.
C.
Lin
, S.
Chen
, L.
Xiao
, and Y.
Liu
, “Tuning drop motion by chemical chessboard-patterned surfaces: A many-body dissipative particle dynamics study
,” Langmuir
34
, 2708
–2715
(2018
). 23.
A. J.
Alvarez-Socorro
, M. G.
Clerc
, M.
Ferré
, and E.
Knobloch
, “Front depinning by deterministic and stochastic fluctuations: A comparison
,” Phys. Rev. E
99
, 062226
(2019
). 24.
Q.
Li
, P.
Zhou
, and H.
Yan
, “Pinning–depinning mechanism of the contact line during evaporation on chemically patterned surfaces: A lattice Boltzmann study
,” Langmuir
32
, 9389
–9396
(2016
). 25.
B.
Dong
, F.
Wang
, X.
Zhang
, and X.
Jiang
, “3D lattice Boltzmann simulation of droplet evaporation on patterned surfaces: Study of pinning–depinning mechanism
,” Int. J. Multiphase Flow
125
, 103218
(2020
). 26.
F.
Shan
, J.
Xiao
, Z.
Chai
, and B.
Shi
, “Pinning and depinning in imbibition beyond a sharp edge: A lattice Boltzmann study
,” Int. J. Multiphase Flow
159
, 104317
(2023
). 27.
J.
Zhang
, H.
Huang
, and X.-Y.
Lu
, “Pinning–depinning mechanism of the contact line during evaporation of nanodroplets on heated heterogeneous surfaces: A molecular dynamics simulation
,” Langmuir
35
, 6356
–6366
(2019
). 28.
F.
Haudin
, R.
Elías
, R. G.
Rojas
, U.
Bortolozzo
, M.
Clerc
, and S.
Residori
, “Front dynamics and pinning-depinning phenomenon in spatially periodic media
,” Phys. Rev. E
81
, 056203
(2010
). 29.
30.
P.
Vulto
, N.
Glade
, L.
Altomare
, J.
Bablet
, L.
Del Tin
, G.
Medoro
, I.
Chartier
, N.
Manaresi
, M.
Tartagni
, and R.
Guerrieri
, “Microfluidic channel fabrication in dry film resist for production and prototyping of hybrid chips
,” Lab Chip
5
, 158
–162
(2005
). 31.
D.
Qin
, Y.
Xia
, and G. M.
Whitesides
, “Soft lithography for micro-and nanoscale patterning
,” Nat. Protoc.
5
, 491
(2010
). 32.
A. G.
Castro-Montes
, J. F.
Marín
, D.
Teca-Wellmann
, J. A.
González
, and M. A.
García-Ñustes
, “Stability of bubble-like fluxons in disk-shaped Josephson junctions in the presence of a coaxial dipole current
,” Chaos
30
, 063132
(2020
). 33.
J. A.
González
, M. A.
García-Ñustes
, A.
Sánchez
, and P. V.
McClintock
, “Hawking-like emission in kink-soliton escape from a potential well
,” New J. Phys.
10
, 113015
(2008
).34.
N.
Manton
and P.
Sutcliffe
, Topological Solitons
, Cambrige Monographs on Mathematical Physics, 1st ed. (Cambridge University Press
, 2004
).35.
Y. S.
Kivshar
and B. A.
Malomed
, “Dynamics of solitons in nearly integrable systems
,” Rev. Mod. Phys.
61
, 763
–915
(1989
). 36.
T.
Dauxois
and M.
Peyrard
, Physics of Solitons
, 1st ed. (Cambrige University Press
, 2006
).37.
J. F.
Marin
, “Generation of soliton bubbles in a sine-Gordon system with localised inhomogeneities
,” J. Phys.: Conf. Ser.
1043
, 012001
(2018
).38.
J. A.
González
and J. A.
Hołyst
, “Behavior of
kinks in presence of external forces
,” Phys. Rev. B
45
, 10338
–10343
(1992
). 39.
J. A.
González
, A.
Bellorín
, and L. E.
Guerrero
, “Internal modes of sine-Gordon solitons in the presence of spatiotemporal perturbations
,” Phys. Rev. E
65
, 065601
(2002
). 40.
M.
García-Ñustes
, J.
Marin
, and J. A.
González
, “Bubblelike structures generated by activation of internal shape modes in two-dimensional sine-Gordon line solitons
,” Phys. Rev. E
95
, 032222
(2017
).41.
is the speed of light taken as
.
42.
43.
P.
Neta
, M.
Tasinkevych
, M. T.
da Gama
, and C.
Dias
, “Wetting of a solid surface by active matter
,” Soft Matter
17
, 2468
–2478
(2021
). 44.
O.
Chepizhko
, C.
Giampietro
, E.
Mastrapasqua
, M.
Nourazar
, M.
Ascagni
, M.
Sugni
, U.
Fascio
, L.
Leggio
, C.
Malinverno
, G.
Scita
, and S.
Santucci
, “Bursts of activity in collective cell migration
,” Proc. Natl. Acad. Sci.
113
, 11408
–11413
(2016
). 45.
E.
Guyon
, J.-P.
Hulinand
, L.
Petit
, and C. D.
Mitescu
, Physical Hydrodynamics
(Oxford University Press
, 2001
).© 2024 Author(s). Published under an exclusive license by AIP Publishing.
2024
Author(s)
You do not currently have access to this content.