In this article, we propose a numerical model based on the ϕ 4 equation to simulate the dynamics of a front inside a microchannel that features an imperfection at a sidewall to different flow rates. The micro-front displays pinning–depinning phenomena without damped oscillations in the aftermath. To model this behavior, we propose a ϕ 4 model with a localized external force and a damping coefficient. Numerical simulations with a constant damping coefficient show that the front displays pinning–depinning phenomena showing damped oscillations once the imperfection is overcome. Replacing the constant damping coefficient with a parabolic spatial function, we reproduce accurately the experimental front–defect interaction.

1.
V.
Ganesan
and
H.
Brenner
, “
Dynamics of two-phase fluid interfaces in random porous media
,”
Phys. Rev. Lett.
81
,
578
(
1998
).
2.
A. T.
Paxson
and
K. K.
Varanasi
, “
Self-similarity of contact line depinning from textured surfaces
,”
Nat. Commun.
4
,
1
8
(
2013
).
3.
D. D.
Agonafer
,
H.
Lee
,
P. A.
Vasquez
,
Y.
Won
,
K. W.
Jung
,
S.
Lingamneni
,
B.
Ma
,
L.
Shan
,
S.
Shuai
,
Z.
Du
, and
T.
Maitra
, “
Porous micropillar structures for retaining low surface tension liquids
,”
J. Colloid Interface Sci.
514
,
316
327
(
2018
).
4.
L.
Ponson
, “
Depinning transition in the failure of inhomogeneous brittle materials
,”
Phys. Rev. Lett.
103
,
055501
(
2009
).
5.
Y.
Wang
,
H.
Xu
,
W.
Yu
,
B.
Bai
,
X.
Song
, and
J.
Zhang
, “
Surfactant induced reservoir wettability alteration: Recent theoretical and experimental advances in enhanced oil recovery
,”
Pet. Sci.
8
,
463
476
(
2011
).
6.
F.
Campo-Cortés
,
G.
Riboux
, and
J. M.
Gordillo
, “
The effect of contact line pinning favors the mass production of monodisperse microbubbles
,”
Microfluid. Nanofluid.
20
,
21
(
2016
).
7.
F.-C.
Wang
and
H.-A.
Wu
, “
Pinning and depinning mechanism of the contact line during evaporation of nano-droplets sessile on textured surfaces
,”
Soft Matter
9
,
5703
5709
(
2013
).
8.
W.-Z.
Yuan
and
L.-Z.
Zhang
, “
Pinning–depinning mechanisms of the contact line during evaporation of microdroplets on rough surfaces: A lattice Boltzmann simulation
,”
Langmuir
34
,
7906
7915
(
2018
).
9.
L.
Hu
,
Y.
Huang
,
W.
Chen
,
X.
Fu
, and
H.
Xie
, “
Pinning effects of wettability contrast on pendant drops on chemically patterned surfaces
,”
Langmuir
32
,
11780
11788
(
2016
).
10.
K.
Kurogi
,
H.
Yan
, and
K.
Tsujii
, “
Importance of pinning effect of wetting in super water-repellent surfaces
,”
Colloids Surf. A: Physicochem. Eng. Asp.
317
,
592
597
(
2008
).
11.
J.
Wu
,
J.
Xia
,
W.
Lei
, and
B.-P.
Wang
, “
Advanced understanding of stickiness on superhydrophobic surfaces
,”
Sci. Rep.
3
,
3268
(
2013
).
12.
E.
Gogolides
,
K.
Ellinas
, and
A.
Tserepi
, “
Hierarchical micro and nano structured, hydrophilic, superhydrophobic and superoleophobic surfaces incorporated in microfluidics, microarrays and lab on chip microsystems
,”
Microelectron. Eng.
132
,
135
155
(
2015
).
13.
M. S.
Sadullah
,
J. R.
Panter
, and
H.
Kusumaatmaja
, “
Factors controlling the pinning force of liquid droplets on liquid infused surfaces
,”
Soft Matter
16
,
8114
8121
(
2020
).
14.
M.
Queralt-Martín
,
M.
Pradas
,
R.
Rodríguez-Trujillo
,
M.
Arundell
,
E. C.
Poiré
, and
A.
Hernández-Machado
, “
Pinning and avalanches in hydrophobic microchannels
,”
Phys. Rev. Lett.
106
,
194501
(
2011
).
15.
J.
Atencia
and
D. J.
Beebe
, “
Controlled microfluidic interfaces
,”
Nature
437
,
648
655
(
2005
).
16.
A.
Javadi
,
M.
Habibi
,
F. S.
Taheri
,
S.
Moulinet
, and
D.
Bonn
, “
Effect of wetting on capillary pumping in microchannels
,”
Sci. Rep.
3
,
1
6
(
2013
).
17.
N.
Ibrahim-Rassoul
,
E.-K.
Si-Ahmed
,
A.
Serir
,
A.
Kessi
,
J.
Legrand
, and
N.
Djilali
, “
Investigation of two-phase flow in a hydrophobic fuel-cell micro-channel
,”
Energies
12
,
2061
(
2019
).
18.
P. E.
Theodorakis
,
A.
Amirfazli
,
B.
Hu
, and
Z.
Che
, “
Droplet control based on pinning and substrate wettability
,”
Langmuir
37
,
4248
4255
(
2021
).
19.
J.
Wang
,
Q.
Yang
,
M.
Wang
,
C.
Wang
, and
L.
Jiang
, “
Rose petals with a novel and steady air bubble pinning effect in aqueous media
,”
Soft Matter
8
,
2261
2266
(
2012
).
20.
C.-K.
Tung
,
O.
Krupa
,
E.
Apaydin
,
J.-J.
Liou
,
A.
Diaz-Santana
,
B. J.
Kim
, and
M.
Wu
, “
A contact line pinning based microfluidic platform for modelling physiological flows
,”
Lab Chip
13
,
3876
3885
(
2013
).
21.
A.
Curtis
,
J. J.
Cheng
, and
E. E.
Hui
, “
Cell patterning by surface tension pinning in microfluidic channels
,”
Biomicrofluidics
14
,
024102
(
2020
).
22.
C.
Lin
,
S.
Chen
,
L.
Xiao
, and
Y.
Liu
, “
Tuning drop motion by chemical chessboard-patterned surfaces: A many-body dissipative particle dynamics study
,”
Langmuir
34
,
2708
2715
(
2018
).
23.
A. J.
Alvarez-Socorro
,
M. G.
Clerc
,
M.
Ferré
, and
E.
Knobloch
, “
Front depinning by deterministic and stochastic fluctuations: A comparison
,”
Phys. Rev. E
99
,
062226
(
2019
).
24.
Q.
Li
,
P.
Zhou
, and
H.
Yan
, “
Pinning–depinning mechanism of the contact line during evaporation on chemically patterned surfaces: A lattice Boltzmann study
,”
Langmuir
32
,
9389
9396
(
2016
).
25.
B.
Dong
,
F.
Wang
,
X.
Zhang
, and
X.
Jiang
, “
3D lattice Boltzmann simulation of droplet evaporation on patterned surfaces: Study of pinning–depinning mechanism
,”
Int. J. Multiphase Flow
125
,
103218
(
2020
).
26.
F.
Shan
,
J.
Xiao
,
Z.
Chai
, and
B.
Shi
, “
Pinning and depinning in imbibition beyond a sharp edge: A lattice Boltzmann study
,”
Int. J. Multiphase Flow
159
,
104317
(
2023
).
27.
J.
Zhang
,
H.
Huang
, and
X.-Y.
Lu
, “
Pinning–depinning mechanism of the contact line during evaporation of nanodroplets on heated heterogeneous surfaces: A molecular dynamics simulation
,”
Langmuir
35
,
6356
6366
(
2019
).
28.
F.
Haudin
,
R.
Elías
,
R. G.
Rojas
,
U.
Bortolozzo
,
M.
Clerc
, and
S.
Residori
, “
Front dynamics and pinning-depinning phenomenon in spatially periodic media
,”
Phys. Rev. E
81
,
056203
(
2010
).
29.
L.
Pismen
,
Patterns and Interfaces in Dissipative Dynamics
, 1st ed. (
Springer
,
2006
).
30.
P.
Vulto
,
N.
Glade
,
L.
Altomare
,
J.
Bablet
,
L.
Del Tin
,
G.
Medoro
,
I.
Chartier
,
N.
Manaresi
,
M.
Tartagni
, and
R.
Guerrieri
, “
Microfluidic channel fabrication in dry film resist for production and prototyping of hybrid chips
,”
Lab Chip
5
,
158
162
(
2005
).
31.
D.
Qin
,
Y.
Xia
, and
G. M.
Whitesides
, “
Soft lithography for micro-and nanoscale patterning
,”
Nat. Protoc.
5
,
491
(
2010
).
32.
A. G.
Castro-Montes
,
J. F.
Marín
,
D.
Teca-Wellmann
,
J. A.
González
, and
M. A.
García-Ñustes
, “
Stability of bubble-like fluxons in disk-shaped Josephson junctions in the presence of a coaxial dipole current
,”
Chaos
30
,
063132
(
2020
).
33.
J. A.
González
,
M. A.
García-Ñustes
,
A.
Sánchez
, and
P. V.
McClintock
, “
Hawking-like emission in kink-soliton escape from a potential well
,”
New J. Phys.
10
,
113015
(
2008
).
34.
N.
Manton
and
P.
Sutcliffe
,
Topological Solitons
, Cambrige Monographs on Mathematical Physics, 1st ed. (
Cambridge University Press
,
2004
).
35.
Y. S.
Kivshar
and
B. A.
Malomed
, “
Dynamics of solitons in nearly integrable systems
,”
Rev. Mod. Phys.
61
,
763
915
(
1989
).
36.
T.
Dauxois
and
M.
Peyrard
,
Physics of Solitons
, 1st ed. (
Cambrige University Press
,
2006
).
37.
J. F.
Marin
, “
Generation of soliton bubbles in a sine-Gordon system with localised inhomogeneities
,”
J. Phys.: Conf. Ser.
1043
,
012001
(
2018
).
38.
J. A.
González
and
J. A.
Hołyst
, “
Behavior of ϕ 4 kinks in presence of external forces
,”
Phys. Rev. B
45
,
10338
10343
(
1992
).
39.
J. A.
González
,
A.
Bellorín
, and
L. E.
Guerrero
, “
Internal modes of sine-Gordon solitons in the presence of spatiotemporal perturbations
,”
Phys. Rev. E
65
,
065601
(
2002
).
40.
M.
García-Ñustes
,
J.
Marin
, and
J. A.
González
, “
Bubblelike structures generated by activation of internal shape modes in two-dimensional sine-Gordon line solitons
,”
Phys. Rev. E
95
,
032222
(
2017
).
41.
c is the speed of light taken as c = 1.
42.
P. K.
Kundu
and
I. M.
Cohen
,
Fluid Mechanics
, 2nd ed. (
Academic Press
,
2002
).
43.
P.
Neta
,
M.
Tasinkevych
,
M. T.
da Gama
, and
C.
Dias
, “
Wetting of a solid surface by active matter
,”
Soft Matter
17
,
2468
2478
(
2021
).
44.
O.
Chepizhko
,
C.
Giampietro
,
E.
Mastrapasqua
,
M.
Nourazar
,
M.
Ascagni
,
M.
Sugni
,
U.
Fascio
,
L.
Leggio
,
C.
Malinverno
,
G.
Scita
, and
S.
Santucci
, “
Bursts of activity in collective cell migration
,”
Proc. Natl. Acad. Sci.
113
,
11408
11413
(
2016
).
45.
E.
Guyon
,
J.-P.
Hulinand
,
L.
Petit
, and
C. D.
Mitescu
,
Physical Hydrodynamics
(
Oxford University Press
,
2001
).

Supplementary Material

You do not currently have access to this content.