In humans, ventricular folds are located superiorly to the vocal folds. Under special circumstances such as voice pathology or singing, they vibrate together with the vocal folds to contribute to the production of voice. In the present study, experimental data measured from physical models of the vocal and ventricular folds were analyzed in the light of nonlinear dynamics. The physical models provide a useful experimental framework to study the biomechanics of human vocalizations. Of particular interest in this experiment are co-oscillations of the vocal and ventricular folds, occasionally accompanied by irregular dynamics. We show that such a system can be regarded as two coupled oscillators, which give rise to various cooperative behaviors such as synchronized oscillations with a 1:1 or 1:2 frequency ratio and desynchronized oscillations with torus or chaos. The insight gained from the view of nonlinear dynamics should be of significant use for the diagnosis of voice pathologies, such as ventricular fold dysphonia.

1.
A.
Pikovsky
,
J.
Kurths
,
M.
Rosenblum
, and
J.
Kurths
,
Synchronization: A Universal Concept in Nonlinear Sciences
(
Cambridge University Press
,
2003
), Vol. 12.
2.
N.
Marwan
,
M. C.
Romano
,
M.
Thiel
, and
J.
Kurths
, “
Recurrence plots for the analysis of complex systems
,”
Phys. Rep.
438
,
237
329
(
2007
).
3.
G. V.
Osipov
,
J.
Kurths
, and
C.
Zhou
,
Synchronization in Oscillatory Networks
(
Springer Science & Business Media
,
2007
).
4.
A.
Arenas
,
A.
Díaz-Guilera
,
J.
Kurths
,
Y.
Moreno
, and
C.
Zhou
, “
Synchronization in complex networks
,”
Phys. Rep.
469
,
93
153
(
2008
).
5.
N.
Marwan
,
J. F.
Donges
,
Y.
Zou
,
R. V.
Donner
, and
J.
Kurths
, “
Complex network approach for recurrence analysis of time series
,”
Phys. Lett. A
373
,
4246
4254
(
2009
).
6.
Y.
Zou
,
R. V.
Donner
,
N.
Marwan
,
J. F.
Donges
, and
J.
Kurths
, “
Complex network approaches to nonlinear time series analysis
,”
Phys. Rep.
787
,
1
97
(
2019
).
7.
N.
Boers
,
B.
Goswami
,
A.
Rheinwalt
,
B.
Bookhagen
,
B.
Hoskins
, and
J.
Kurths
, “
Complex networks reveal global pattern of extreme-rainfall teleconnections
,”
Nature
566
,
373
377
(
2019
).
8.
I. R.
Titze
,
Principles of Voice Production
(
Prentice Hall
,
Englewood Cliffs, NJ
,
1994
).
9.
N. H.
Fletcher
, “
The nonlinear physics of musical instruments
,”
Rep. Prog. Phys.
62
,
723
(
1999
).
10.
G. W.
Swift
, “
Thermoacoustic engines
,”
J. Acoust. Soc. Am.
84
,
1145
1180
(
1988
).
11.
W.
Lauterborn
and
E.
Cramer
, “
Subharmonic route to chaos observed in acoustics
,”
Phys. Rev. Lett.
47
,
1445
(
1981
).
12.
I. R.
Titze
and
F.
Alipour
,
The Myoelastic Aerodynamic Theory of Phonation
(
National Center for Voice and Speech
,
2006
).
13.
H.
Herzel
,
D.
Berry
,
I.
Titze
, and
I.
Steinecke
, “
Nonlinear dynamics of the voice: Signal analysis and biomechanical modeling
,”
Chaos
5
,
30
34
(
1995
).
14.
I.
Steinecke
and
H.
Herzel
, “
Bifurcations in an asymmetric vocal-fold model
,”
J. Acoust. Soc. Am.
97
,
1874
1884
(
1995
).
15.
I.
Titze
,
R. J.
Baken
, and
H.
Herzel
, “Evidence of chaos in vocal fold vibration,” Vocal Fold Physiology, Frontiers in Basic Science , 143–188 (1993).
16.
H.
Herzel
,
D.
Berry
,
I. R.
Titze
, and
M.
Saleh
, “
Analysis of vocal disorders with methods from nonlinear dynamics
,”
J. Speech, Lang., Hear. Res.
37
,
1008
1019
(
1994
).
17.
I. T.
Tokuda
,
J.
Horáček
,
J. G.
Švec
, and
H.
Herzel
, “
Bifurcations and chaos in register transitions of excised larynx experiments
,”
Chaos
18
,
013102
(
2008
).
18.
W. T.
Fitch
,
J.
Neubauer
, and
H.
Herzel
, “
Calls out of chaos: The adaptive significance of nonlinear phenomena in mammalian vocal production
,”
Anim. Behav.
63
,
407
418
(
2002
).
19.
T.
Nishimura
,
I. T.
Tokuda
,
S.
Miyachi
,
J. C.
Dunn
,
C. T.
Herbst
,
K.
Ishimura
,
A.
Kaneko
,
Y.
Kinoshita
,
H.
Koda
,
J. P. P.
Saers
,
H.
Imai
,
T.
Matsuda
,
O. N.
Larsen
,
U.
Jürgens
,
H.
Hirabayashi
,
S.
Kojima
, and
T. W.
Fitch
, “
Evolutionary loss of complexity in human vocal anatomy as an adaptation for speech
,”
Science
377
,
760
763
(
2022
).
20.
M.
Kanaya
,
T.
Matsumoto
,
T.
Uemura
,
R.
Kawabata
,
T.
Nishimura
, and
I. T.
Tokuda
, “
Physical modeling of the vocal membranes and their influence on animal voice production
,”
JASA Express Lett.
2
,
111201
(
2022
).
21.
L.
Fuks
,
B.
Hammarberg
, and
J.
Sundberg
, “
A self-sustained vocal-ventricular phonation mode: Acoustical, aerodynamic and glottographic evidences
,”
KTH TMH-QPSR
3
,
49
59
(
1998
).
22.
P.-Å.
Lindestad
,
M.
Södersten
,
B.
Merker
, and
S.
Granqvist
, “
Voice source characteristics in mongolian “Throat singing” studied with high-speed imaging technique, acoustic spectra , and inverse filtering
,”
J. Voice
15
,
78
85
(
2001
).
23.
K.-I.
Sakakibara
,
H.
Imagawa
,
T.
Kouishi
,
K.
Kondo
,
E. Z.
Murano
,
M. A.
Kumada
, and
S.
Niimi
, “Vocal fold and false vocal fold vibrations in throat singing and synthesis of khöömei,” in International Computer Music Conference (Citeseer, 2001).
24.
L.
Bailly
,
N.
Henrich
, and
X.
Pelorson
, “
Vocal fold and ventricular fold vibration in period-doubling phonation: Physiological description and aerodynamic modeling
,”
J. Acoust. Soc. Am.
127
,
3212
3222
(
2010
).
25.
P. G.
Von Doersten
,
K.
Izdebski
,
J. C.
Ross
, and
R. M.
Cruz
, “
Ventricular dysphonia: A profile of 40 cases
,”
The Laryngoscope
102
,
1296
1301
(
1992
).
26.
Y.
Maryn
,
M. S.
De Bodt
, and
P.
Van Cauwenberge
, “
Ventricular dysphonia: Clinical aspects and therapeutic options
,”
The Laryngoscope
113
,
859
866
(
2003
).
27.
P.-Å.
Lindestad
,
V.
Blixt
,
J.
Pahlberg-Olsson
, and
B.
Hammarberg
, “
Ventricular fold vibration in voice production: A high-speed imaging study with kymographic, acoustic and perceptual analyses of a voice patient and a vocally healthy subject
,”
Logop. Phoniatr. Vocol.
29
,
162
170
(
2004
).
28.
S. L.
Thomson
,
L.
Mongeau
, and
S. H.
Frankel
, “
Aerodynamic transfer of energy to the vocal folds
,”
J. Acoust. Soc. Am.
118
,
1689
1700
(
2005
).
29.
J. S.
Drechsel
and
S. L.
Thomson
, “
Influence of supraglottal structures on the glottal jet exiting a two-layer synthetic, self-oscillating vocal fold model
,”
J. Acoust. Soc. Am.
123
,
4434
4445
(
2008
).
30.
Z.
Zhang
,
J.
Neubauer
, and
D. A.
Berry
, “
Influence of vocal fold stiffness and acoustic loading on flow-induced vibration of a single-layer vocal fold model
,”
J. Sound Vib.
322
,
299
313
(
2009
).
31.
P. R.
Murray
and
S. L.
Thomson
, “
Vibratory responses of synthetic, self-oscillating vocal fold models
,”
J. Acoust. Soc. Am.
132
,
3428
3438
(
2012
).
32.
T.
Matsumoto
,
M.
Kanaya
,
K.
Ishimura
, and
I. T.
Tokuda
, “
Experimental study of vocal–ventricular fold oscillations in voice production
,”
J. Acoust. Soc. Am.
149
,
271
284
(
2021
).
33.
T.
Matsumoto
,
M.
Kanaya
,
D.
Matsushima
,
C.
Han
, and
I. T.
Tokuda
, “
Synchronized and desynchronized dynamics observed from physical models of the vocal and ventricular folds
,”
J. Voice
(Published online,
2021
).
34.
M.
Agarwal
,
R. C.
Scherer
, and
H.
Hollien
, “
The false vocal folds: Shape and size in frontal view during phonation based on laminagraphic tracings
,”
J. Voice
17
,
97
113
(
2003
).
35.
R. W.
Chan
,
M.
Fu
, and
N.
Tirunagari
, “
Elasticity of the human false vocal fold
,”
Ann. Otol., Rhinol. Laryngol.
115
,
370
381
(
2006
).
36.
B. A.
Pickup
and
S. L.
Thomson
, “
Flow-induced vibratory response of idealized versus magnetic resonance imaging-based synthetic vocal fold models
,”
J. Acoust. Soc. Am.
128
,
EL124
EL129
(
2010
).
37.
F.
Takens
, “Detecting strange attractors in turbulence,” in Dynamical Systems and Turbulence, Warwick 1980 (Springer, 1981), pp. 366–381.
38.
D. A.
Berry
,
H.
Herzel
,
I. R.
Titze
, and
B. H.
Story
, “
Bifurcations in excised larynx experiments
,”
J. Voice
10
,
129
138
(
1996
).
39.
P.
Mergell
,
H.
Herzel
,
T.
Wittenberg
,
M.
Tigges
, and
U.
Eysholdt
, “
Phonation onset: Vocal fold modeling and high-speed glottography
,”
J. Acoust. Soc. Am.
104
,
464
470
(
1998
).
40.
H.
Jaeger
and
H.
Haas
, “
Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication
,”
Science
304
,
78
80
(
2004
).
41.
J.
Pathak
,
Z.
Lu
,
B. R.
Hunt
,
M.
Girvan
, and
E.
Ott
, “
Using machine learning to replicate chaotic attractors and calculate lyapunov exponents from data
,”
Chaos
27
,
121102
(
2017
).
42.
J.
Pathak
,
B.
Hunt
,
M.
Girvan
,
Z.
Lu
, and
E.
Ott
, “
Model-free prediction of large spatiotemporally chaotic systems from data: A reservoir computing approach
,”
Phys. Rev. Lett.
120
,
024102
(
2018
).
43.
I.
Shimada
and
T.
Nagashima
, “
A numerical approach to ergodic problem of dissipative dynamical systems
,”
Prog. Theor. Phys.
61
,
1605
1616
(
1979
).
44.
J. G.
Švec
and
H. K.
Schutte
, “
Videokymography: High-speed line scanning of vocal fold vibration
,”
J. Voice
10
,
201
205
(
1996
).
45.
Y.
Wang
,
H.
Yao
, and
S.
Zhao
, “
Auto-encoder based dimensionality reduction
,”
Neurocomputing
184
,
232
242
(
2016
).
46.
S. L.
Brunton
,
J. L.
Proctor
, and
J. N.
Kutz
, “
Discovering governing equations from data by sparse identification of nonlinear dynamical systems
,”
Proc. Natl. Acad. Sci.
113
,
3932
3937
(
2016
).
47.
J.
Neubauer
,
P.
Mergell
,
U.
Eysholdt
, and
H.
Herzel
, “
Spatio-temporal analysis of irregular vocal fold oscillations: Biphonation due to desynchronization of spatial modes
,”
J. Acoust. Soc. Am.
110
,
3179
3192
(
2001
).
48.
J. J.
Jiang
,
Y.
Zhang
, and
J.
Stern
, “
Modeling of chaotic vibrations in symmetric vocal folds
,”
J. Acoust. Soc. Am.
110
,
2120
2128
(
2001
).
49.
H.
Hatzikirou
,
W.
Fitch
, and
H.
Herzel
, “
Voice instabilities due to source-tract interactions
,”
Acta Acust. Acust.
92
,
468
475
(
2006
).
50.
I. R.
Titze
, “
Nonlinear source–filter coupling in phonation: Theory
,”
J. Acoust. Soc. Am.
123
,
1902
1915
(
2008
).
51.
P.
Mergell
,
W. T.
Fitch
, and
H.
Herzel
, “
Modeling the role of nonhuman vocal membranes in phonation
,”
J. Acoust. Soc. Am.
105
,
2020
2028
(
1999
).
52.
S.
Kiritani
,
H.
Hirose
, and
H.
Imagawa
, “
High-speed digital image analysis of vocal cord vibration in diplophonia
,”
Speech Commun.
13
,
23
32
(
1993
).
53.
K. L.
Syndergaard
,
S.
Dushku
, and
S. L.
Thomson
, “
Electrically conductive synthetic vocal fold replicas for voice production research
,”
J. Acoust. Soc. Am.
142
,
EL63
EL68
(
2017
).

Supplementary Material

You do not currently have access to this content.