While actors in a population can interact with anyone else freely, social relations significantly influence our inclination toward particular individuals. The consequence of such interactions, however, may also form the intensity of our relations established earlier. These dynamical processes are captured via a coevolutionary model staged in multiplex networks with two distinct layers. In a so-called relationship layer, the weights of edges among players may change in time as a consequence of games played in the alternative interaction layer. As an reasonable assumption, bilateral cooperation confirms while mutual defection weakens these weight factors. Importantly, the fitness of a player, which basically determines the success of a strategy imitation, depends not only on the payoff collected from interactions, but also on the individual relationship index calculated from the mentioned weight factors of related edges. Within the framework of weak prisoner’s dilemma situation, we explore the potential outcomes of the mentioned coevolutionary process where we assume different topologies for relationship layer. We find that higher average degree of the relationship graph is more beneficial to maintain cooperation in regular graphs, but the randomness of links could be a decisive factor in harsh situations. Surprisingly, a stronger coupling between relationship index and fitness discourage the evolution of cooperation by weakening the direct consequence of a strategy change. To complete our study, we also monitor how the distribution of relationship index vary and detect a strong relation between its polarization and the general cooperation level.

1
R.
Axelrod
and
W. D.
Hamilton
, “
The evolution of cooperation
,”
Science
211
,
1390
1396
(
1981
).
2
M. A.
Nowak
and
R. M.
May
, “
Evolutionary games and spatial chaos
,”
Nature
359
,
826
829
(
1992
).
3
M. A.
Nowak
and
R. M.
May
, “
The spatial dilemmas of evolution
,”
Int. J. Bifur. Chaos
3
,
35
78
(
1993
).
4
Z.
Rong
,
Z.
Wu
,
X.
Li
,
P.
Holme
, and
G.
Chen
, “
Heterogeneous cooperative leadership structure emerging from random regular graphs
,”
Chaos
29
,
103103
(
2019
).
5
F. C.
Santos
and
J. M.
Pacheco
, “
Scale-free networks provide a unifying framework for the emergence of cooperation
,”
Phys. Rev. Lett.
95
,
098104
(
2005
).
6
E.
Ahmed
and
A. S.
Elgazzar
, “
On coordination and continuous hawk-dove games on small-world networks
,”
Eur. Phys. J. B
18
,
159
162
(
2000
).
7
G.
Abramson
and
M. N.
Kuperman
, “
Social games in a social network
,”
Phys. Rev. E
63
,
030901
(
2000
).
8
M. A.
Nowak
, “
Five rules for the evolution of cooperation
,”
Science
314
,
1560
1563
(
2006
).
9
Z.
Su
,
L.
Li
,
J.
Xiao
,
B.
Podobnik
, and
H. E.
Stanley
, “
Promotion of cooperation induced by two-sided players in prisoner’s dilemma game
,”
Physica A
490
,
584
590
(
2018
).
10
A.
Civilini
,
N.
Anbarci
, and
V.
Latora
, “
Evolutionary game model of group choice dilemmas on hypergraphs
,”
Phys. Rev. Lett.
127
,
268301
(
2021
).
11
Z.
Zeng
,
Q.
Li
, and
M.
Feng
, “
Spatial evolution of cooperation with variable payoffs
,”
Chaos
32
,
073118
(
2022
).
12
M. G.
Zimmermann
,
V. M.
Eguiluz
, and
M. S.
Miguel
, “Cooperation, adaptation and the emergence of leadership,” in Economics with Heterogeneous Interacting Agents (Springer, 2001), pp. 73–86.
13
M.
Perc
and
A.
Szolnoki
, “
Coevolutionary games—A mini review
,”
BioSystems
99
,
109
125
(
2010
).
14
H.
Ebel
and
S.
Bornholdt
, “Evolutionary games and the emergence of complex networks,” cond-mat/0211666 (2002).
15
A.
Szolnoki
,
M.
Perc
, and
Z.
Danku
, “
Making new connections towards cooperation in the prisoner’s dilemma game
,”
EPL
84
,
50007
(
2008
).
16
A.
Szolnoki
and
M.
Perc
, “
Emergence of multilevel selection in the prisoner’s dilemma game on coevolving random networks
,”
New J. Phys.
11
,
093033
(
2009
).
17
Z.
Xiao
,
X.
Chen
, and
A.
Szolnoki
, “
Leaving bads provides better outcome than approaching goods in a social dilemma
,”
New J. Phys.
22
,
023012
(
2020
).
18
C.
Liu
,
H.
Guo
,
Z.
Li
,
X.
Gao
, and
S.
Li
, “
Coevolution of multi-game resolves social dilemma in network population
,”
Appl. Math. Comput.
341
,
402
407
(
2019
).
19
W.
Chen
,
X.
Wang
, and
J.
Quan
, “
Evolutionary dynamics of cooperation in multi-game populations
,”
Phys. Lett. A
426
,
127882
(
2022
).
20
X.
Li
,
S.
Sun
, and
C.
Xia
, “
Reputation-based adaptive adjustment of link weight among individuals promotes the cooperation in spatial social dilemmas
,”
Appl. Math. Comput.
361
,
810
820
(
2019
).
21
Y.
Mao
,
Z.
Rong
, and
Z.
Wu
, “
Effect of collective influence on the evolution of cooperation in evolutionary prisoner’s dilemma games
,”
Appl. Math. Comput.
392
,
125679
(
2021
).
22
Z.
Wang
,
A.
Szolnoki
, and
M.
Perc
, “
Evolution of public cooperation on interdependent networks: The impact of biased utility functions
,”
EPL
97
,
48001
(
2012
).
23
S.
Boccaletti
,
G.
Bianconi
,
R.
Criado
,
C. I. D.
Genio
,
J.
Gómez-Gardeñes
,
M.
Romance
,
I.
Sendiña-Nadal
,
Z.
Wang
, and
M.
Zanin
, “
The structure and dynamics of multilayer networks
,”
Phys. Rep.
544
,
1
122
(
2014
).
24
A.
Li
,
L.
Zhou
,
Q.
Su
,
S. P.
Cornelius
,
Y.-Y.
Liu
,
L.
Wang
, and
S. A.
Levin
, “
Evolution of cooperation on temporal networks
,”
Nat. Commun.
11
,
2259
(
2020
).
25
S.
Majhi
,
M.
Perc
, and
D.
Ghosh
, “
Dynamics on higher-order networks: A review
,”
J. R. Soc. Interface
19
,
20220043
(
2022
).
26
Z.
Wang
,
L.
Wang
,
A.
Szolnoki
, and
M.
Perc
, “
Evolutionary games on multilayer networks: A colloquium
,”
Eur. Phys. J. B
88
,
1
15
(
2015
).
27
A.
Halu
,
R. J.
Mondragón
,
P.
Panzarasa
, and
G.
Bianconi
, “
Multiplex pagerank
,”
PLoS One
8
,
e78293
(
2013
).
28
J.
Gao
,
D.
Li
, and
S.
Havlin
, “
From a single network to a network of networks
,”
Nat. Sci. Rev.
1
,
346
356
(
2014
).
29
Z.
Wang
,
A.
Szolnoki
, and
M.
Perc
, “
Optimal interdependence between networks for the evolution of cooperation
,”
Sci. Rep.
3
,
2470
(
2013
).
30
Z.
Zhu
,
Y.
Dong
,
Y.
Lu
, and
L.
Shi
, “
Information exchange promotes and jeopardizes cooperation on interdependent networks
,”
Physica A
569
,
125772
(
2021
).
31
L.
Su
,
Z.
Yang
,
B.
Zhou
,
N.
Zhang
, and
Y.
Li
, “
Effects of interdependent network reciprocity on the evolution of public cooperation
,”
Appl. Math. Comput.
454
,
128029
(
2023
).
32
K.
Huang
,
Y.
Cheng
,
X.
Zheng
, and
Y.
Yang
, “
Cooperative behavior evolution of small groups on interconnected networks
,”
Chaos, Solit. Fract.
80
,
90
95
(
2015
).
33
A.
Szolnoki
and
M.
Perc
, “
Information sharing promotes prosocial behaviour
,”
New J. Phys.
15
,
053010
(
2013
).
34
J.
Gómez-Gardeñes
,
I.
Reinares
,
A.
Arenas
, and
L. M.
Floría
, “
Evolution of cooperation in multiplex networks
,”
Sci. Rep.
2
,
620
(
2012
).
35
Y.
Mao
,
Z.
Rong
, and
Z.
Han
, “
Influence of diverse timescales on the evolution of cooperation in a double-layer lattice
,”
Front. Phys.
11
,
1272395
(
2023
).
36
Q.
Li
,
Z.
Wang
,
B.
Wu
, and
Y.
Xiao
, “
Competition and cooperation: Dynamical interplay diffusion between social topic multiple messages in multiplex networks
,”
IEEE Trans. Comput. Soc. Syst.
6
,
467
478
(
2019
).
37
M.
Feng
,
X.
Li
,
Y.
Li
, and
Q.
Li
, “
The impact of nodes of information dissemination on epidemic spreading in dynamic multiplex networks
,”
Chaos
33
,
043112
(
2023
).
38
J.
Yu
,
Z.
Liu
, and
X.
Han
, “
Cooperation evolution in multiplex networks with the heterogeneous diffusion model
,”
IEEE Access
9
,
86074
86082
(
2021
).
39
K.
Hayashi
,
R.
Suzuki
, and
T.
Arita
, “
Coevolution of cooperation and layer selection strategy in multiplex networks
,”
Games
7
(
4
),
34
(
2016
).
40
Z.
Yang
,
C.
Yu
,
J.
Kim
,
Z.
Li
, and
L.
Wang
, “
Evolution of cooperation in synergistically evolving dynamic interdependent networks: Fundamental advantages of coordinated network evolution
,”
New J. Phys.
21
,
073057
(
2019
).
41
L.
Li
,
C.
Chen
, and
A.
Li
, “
Autonomy promotes the evolution of cooperation in prisoner’s dilemma
,”
Phys. Rev. E
102
,
042402
(
2020
).
42
E.
Fehr
, “
Don’t lose your reputation
,”
Nature
432
,
449
450
(
2004
).
43
J.
Quan
,
C.
Tang
, and
X.
Wang
, “
Reputation-based discount effect in imitation on the evolution of cooperation in spatial public goods games
,”
Physica A
563
,
125488
(
2021
).
44
D. J.
Watts
and
S. H.
Strogatz
, “
Collective dynamics of ‘Small-world’ networks
,”
Nature
393
,
440
442
(
1998
).
You do not currently have access to this content.