Influence maximization problem has received significant attention in recent years due to its application in various domains, such as product recommendation, public opinion dissemination, and disease propagation. This paper proposes a theoretical analysis framework for collective influence in hypergraphs, focusing on identifying a set of seeds that maximize influence in threshold models. First, we extend the message passing method from pairwise networks to hypergraphs to accurately describe the activation process in threshold models. Then, we introduce the concept of hypergraph collective influence (HCI) to measure the influence of nodes. Subsequently, we design an algorithm, HCI-TM, to select the influence maximization set, taking into account both node and hyperedge activation. Numerical simulations demonstrate that HCI-TM outperforms several competing algorithms in synthetic and real-world hypergraphs. Furthermore, we find that HCI can be used as a tool to predict the occurrence of cascading phenomena. Notably, we find that the HCI-TM algorithm works better for larger average hyperdegrees in Erdös–Rényi hypergraphs and smaller power-law exponents in scale-free hypergraphs.

1.
M.
Granovetter
, “
Threshold models of collective behavior
,”
Am. J. Sociol.
83
,
1420
1443
(
1978
).
2.
E.
Tardos
,
D.
Kempe
, and
J.
Kleinberg
, “Maximizing the spread of influence in a social network,” in 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM, 2003), Vol. 1, pp. 1–10.
3.
T. W.
Valente
and
R. L.
Davis
, “
Accelerating the diffusion of innovations using opinion leaders
,”
Ann. Am. Acad. Pol. Soc. Sci.
566
,
55
67
(
1999
).
4.
A.
Galeotti
and
S.
Goyal
, “
Influencing the influencers: A theory of strategic diffusion
,”
Rand J. Econ.
40
,
509
532
(
2010
).
5.
C.
Chen
,
W.
Wang
, and
Y.
Wang
, “Scalable influence maximization for prevalent viral marketing in large-scale social networks,” in Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, 25–28 July 2010 (ACM, 2010), pp. 1–11.
6.
R.
Zhang
,
X.
Wang
, and
S.
Pei
, “
Targeted influence maximization in complex networks
,”
Phys. D: Nonlinear Phenom.
446
,
133677
(
2023
).
7.
H.
Huang
and
H.
He
, “
Community-based influence maximization for viral marketing
,”
Appl. Intell.
49
,
2137
2150
(
2019
).
8.
S.
Lei
,
S.
Maniu
,
L.
Mo
,
R.
Cheng
, and
P.
Senellart
, “
Online influence maximization
,” in
KDD '15: Proceedings of the 211th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(
ACM
,
2015
), pp.
645
654
.
9.
F.
Morone
,
H. A.
Makse
,
J.
Wang
, and
S.
Pei
, “
Influencer identification in dynamical complex systems
,”
J. Complex Netw.
8
,
cnz029
(
2020
).
10.
S.
Pei
,
L.
Muchnik
,
J. S.
Andrade
,
Z.
Zheng
, and
H. A.
Makse
, “
Searching for superspreaders of information in real-world social media
,”
Sci. Rep.
4
,
5547
(
2014
).
11.
L. C.
Freeman
, “
Centrality in social networks conceptual clarification
,”
Soc. Netw.
1
,
215
239
(
1978
).
12.
H.
Albert
,
R.
Jeong
, and
A.-L.
Barabási
, “
Error and attack tolerance of complex networks
,” in
The Structure and Dynamics of Networks
(
Princeton University Press
,
2006
).
13.
S.
Brin
and
L.
Page
, “
The anatomy of a large-scale hypertextual web search engine
,”
Comput. Netw. ISDN Syst.
30
,
107
117
(
1998
).
14.
S. B.
Seidman
, “
Network structure and minimum degree
,”
Soc. Netw.
5
,
269
(
1983
).
15.
F.
Morone
and
H.
Makse
, “
Influence maximization in complex networks through optimal percolation
,”
Nature
527
,
65
(
2015
).
16.
S.
Pei
,
X.
Teng
,
J.
Shaman
,
F.
Morone
, and
H. A.
Makse
, “
Efficient collective influence maximization in cascading processes with first-order transitions
,”
Sci. Rep.
7
,
45240
(
2017
).
17.
R.
Zhang
and
S.
Pei
, “
Dynamic range maximization in excitable networks
,”
Chaos
28
,
013103
(
2018
).
18.
N. D.
Martinez
,
R. J.
Williams
, and
J. A.
Dunne
, “
Diversity, complexity, and persistence in large model ecosystems
,” in
Ecological Networks: Linking Structure to Dynamics in Food Webs
(
Oxford University Press
,
2005
), pp.
163
185
.
19.
F.
Battiston
,
G.
Cencetti
,
I.
Iacopini
,
V.
Latora
,
M.
Lucas
,
A.
Patania
,
J.-G.
Young
, and
G.
Petri
, “
Networks beyond pairwise interactions: Structure and dynamics
,”
Phys. Rep.
874
,
1
92
(
2020
).
20.
D.
Zhou
,
J.
Huang
,
B. S.
Olkopf
, and
B.
Schlkopf
, “Beyond pairwise classification and clustering using hypergraphs,” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005 (CVPR 2005) (IEEE, 2005), pp. 1–14.
21.
C.
Borgs
,
M.
Brautbar
,
J.
Chayes
, and
B.
Lucier
, “
Maximizing social influence in nearly optimal time
,” in
Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms
(
ACM
,
2014
), pp.
946
957
.
22.
M.
Xie
,
X. X.
Zhan
,
C.
Liu
, and
Z. K.
Zhang
, “
An efficient adaptive degree-based heuristic algorithm for influence maximization in hypergraphs
,”
Inf. Process. Manage.
60
,
103161
(
2023
).
23.
A.
Antelmi
,
G.
Cordasco
,
C.
Spagnuolo
, and
P.
Szufel
, “
Social influence maximization in hypergraphs
,”
Entropy
23
,
796
(
2021
).
24.
A. R.
Benson
, “
Three hypergraph eigenvector centralities
,”
SIAM J. Math. Data Sci.
1
,
293
312
(
2019
).
25.
G.
Ferraz de Arruda
,
M.
Tizzani
, and
Y.
Moreno
, “
Phase transitions and stability of dynamical processes on hypergraphs
,”
Commun. Phys.
4
,
24
(
2021
).
26.
M. E.
Aktas
,
S.
Jawaid
,
I.
Gokalp
, and
E.
Akbas
, “Influence maximization on hypergraphs via similarity-based diffusion,” in 2022 IEEE International Conference on Data Mining Workshops (ICDMW) (IEEE, 2022), Vol. 22, pp. 1197–1206.
27.
F.
Tudisco
and
D. J.
Higham
, “
Node and edge nonlinear eigenvector centrality for hypergraphs
,”
Commun. Phys.
4
,
201
(
2021
).
28.
B.
Karrer
and
M. E. J.
Newman
, “
Message passing approach for general epidemic models
,”
Phys. Rev. E
82
,
016101
(
2010
).
29.
Y.-H.
Cheng
,
C.-H.
Kuo
, and
Z.
Zhou
, “
Outbreak minimization v.s. influence maximization: An optimization framework
,”
BMC Med. Inf. Decis. Making
20
,
266
(
2020
).
30.
Z.
Wei
and
M. S.
He
, “Influence of opinion leaders on dynamics and diffusion of network public opinion,” in International Conference on Management Science and Engineering—Annual Conference Proceedings (IEEE, 2013).
31.
L.
Vassio
,
F.
Fagnani
,
P.
Frasca
, and
A.
Ozdaglar
, “
Message passing optimization of harmonic influence centrality
,”
IEEE Trans. Control Netw. Syst.
1
,
109
120
(
2014
).
32.
D.
Centola
, “
The spread of behavior in an online social network experiment
,”
Science
329
,
1194
1197
(
2010
).
33.
S.
Aral
and
D.
Walker
, “
Creating social contagion through viral product design: A randomized trial of peer influence in networks
,”
Manag. Sci.
57
,
1623
1639
(
2011
).
34.
R.-R.
Liu
,
C.-X.
Jia
,
M.
Li
, and
F.
Meng
, “
A threshold model of cascading failure on random hypergraphs
,”
Chaos, Solitons Fractals
173
,
113746
(
2023
).
35.
X. J.
Xu
,
S.
He
, and
L. J.
Zhang
, “
Dynamics of the threshold model on hypergraphs
,”
Chaos
32
,
023125
(
2022
).
36.
S.
Aksoy
,
T. G.
Kolda
, and
A.
Pinar
, “
Measuring and modeling bipartite graphs with community structure
,”
J. Complex Netw.
5
,
581
603
(
2016
).
37.
P. S.
Chodrow
,
N.
Veldt
, and
A. R.
Benson
, “
Generative hypergraph clustering: From blockmodels to modularity
,”
Sci. Adv.
7
,
1303
(
2021
).
38.
I.
Amburg
,
N.
Veldt
, and
A. R.
Benson
, “Hypergraph clustering for finding diverse and experienced groups,” arXiv:2006.05645 (2020).
39.
J.
Ni
,
J.
Li
, and
J.
McAuley
, “
Justifying recommendations using distantly-labeled reviews and fine-grained aspects
,” in
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing
(
Association for Computational Linguistics
,
2019
), pp.
188
197
.
40.
I.
Amburg
,
N.
Veldt
, and
A. R.
Benson
, “Diverse and experienced group discovery via hypergraph clustering,” in Proceedings of the 2022 SIAM International Conference on Data Mining (SDM) (SIAM, 2022), pp. 145–153.
41.
I.
Amburg
,
N.
Veldt
, and
A.
Benson
, “Clustering in graphs and hypergraphs with categorical edge labels,” in WWW’20: The Web Conference 2020 (ACM, 2020), pp. 706–717.
42.
A.
Sinha
,
Z.
Shen
,
Y.
Song
,
H.
Ma
, and
K.
Wang
, “An overview of Microsoft Academic Service (MAS) and applications,” in The 24th International Conference (ACM, 2015), pp. 243–246.
43.
A. R.
Veldt
,
N.
Benson
, and
J.
Kleinberg
, “Minimizing localized ratio cut objectives in hypergraphs,” in 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD) (ACM, 2020), pp. 1708–1718.
44.
R.
Zhang
,
X.
Qu
,
Q.
Zhang
,
X.
Xu
, and
S.
Pei
(2024). “Influence maximization based on threshold model in hypergraphs,” GitHub. https://github.com/QDragon18/Influence-Maximization-based-on-Threshold-Model-in-Hypergraphs
You do not currently have access to this content.