The emergence of the evolutionary game on complex networks provides a fresh framework for studying cooperation behavior between complex populations. Numerous recent progress has been achieved in studying asymmetric games. However, there is still a substantial need to address how to flexibly express the individual asymmetric nature. In this paper, we employ mutual cognition among individuals to elucidate the asymmetry inherent in their interactions. Cognition arises from individuals’ subjective assessments and significantly influences their decision-making processes. In social networks, mutual cognition among individuals is a persistent phenomenon and frequently displays heterogeneity as the influence of their interactions. This unequal cognitive dynamic will, in turn, influence the interactions, culminating in asymmetric outcomes. To better illustrate the inter-individual cognition in asymmetric snowdrift games, the concept of favor value is introduced here. On this basis, the evolution of cognition and its relationship with asymmetry degree are defined. In our simulation, we investigate how game cost and the intensity of individual cognitive changes impact the cooperation frequency. Furthermore, the temporal evolution of individual cognition and its variation under different parameters was also examined. The simulation results reveal that the emergence of heterogeneous cognition effectively addresses social dilemmas, with asymmetric interactions among individuals enhancing the propensity for cooperative choices. It is noteworthy that distinctions exist in the rules governing cooperation and cognitive evolution between regular networks and Watts–Strogatz small-world networks. In light of this, we deduce the relationship between cognition evolution and cooperative behavior in co-evolution and explore potential factors influencing cooperation within the system.

1.
R.
Axelrod
and
W. D.
Hamilton
, “
The evolution of cooperation
,”
Science
211
,
1390
1396
(
1981
).
2.
E.
Szathmáry
and
J. M.
Smith
,
The Major Transitions in Evolution
(
WH Freeman Spektrum
,
Oxford
,
1995
).
3.
C.
Darwin
,
On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life
(
John Murray
,
London
,
1859
).
4.
S. J.
Gould
, “
Darwinism and the expansion of evolutionary theory
,”
Science
216
,
380
387
(
1982
).
5.
R. L.
Trivers
, “
The evolution of reciprocal altruism
,”
Q. Rev. Biol.
46
,
35
57
(
1971
).
6.
D.
Friedman
, “
On economic applications of evolutionary game theory
,”
J. Evol. Econ.
8
,
15
43
(
1998
).
7.
Q.
Li
,
B.
Pi
,
M.
Feng
, and
J.
Kurths
, “
Open data in the digital economy: An evolutionary game theory perspective
,”
IEEE Trans. Comput. Social Syst.
(published online 2023).
8.
B.
Drossel
, “
Biological evolution and statistical physics
,”
Adv. Phys.
50
,
209
295
(
2001
).
9.
C.
Hauert
and
G.
Szabó
, “
Game theory and physics
,”
Am. J. Phys.
73
,
405
414
(
2005
).
10.
Y.
Shi
and
Z.
Rong
, “
Analysis of Q-learning like algorithms through evolutionary game dynamics
,”
IEEE Trans. Circuits Syst. II: Express Briefs
69
,
2463
2467
(
2022
).
11.
A. M.
Colman
, “
Cooperation, psychological game theory, and limitations of rationality in social interaction
,”
Behav. Brain Sci.
26
,
139
153
(
2003
).
12.
J. W.
Weibull
,
Evolutionary Game Theory
(
MIT Press
,
1997
).
13.
M. A.
Nowak
, “
Five rules for the evolution of cooperation
,”
Science
314
,
1560
1563
(
2006
).
14.
M. A.
Nowak
and
R. M.
May
, “
Evolutionary games and spatial chaos
,”
Nature
359
,
826
829
(
1992
).
15.
Z.
Wang
and
M.
Perc
, “
Aspiring to the fittest and promotion of cooperation in the prisoner’s dilemma game
,”
Phys. Rev. E
82
,
021115
(
2010
).
16.
M.
Doebeli
and
C.
Hauert
, “
Models of cooperation based on the prisoner’s dilemma and the snowdrift game
,”
Ecol. Lett.
8
,
748
766
(
2005
).
17.
C.
Hauert
and
M.
Doebeli
, “
Spatial structure often inhibits the evolution of cooperation in the snowdrift game
,”
Nature
428
,
643
646
(
2004
).
18.
A.
Cassar
, “
Coordination and cooperation in local, random and small world networks: Experimental evidence
,”
Games Econ. Behav.
58
,
209
230
(
2007
).
19.
M.
Nakamaru
,
H.
Matsuda
, and
Y.
Iwasa
, “
The evolution of cooperation in a lattice-structured population
,”
J. Theor. Biol.
184
,
65
81
(
1997
).
20.
G.
Szabó
and
I.
Borsos
, “
Evolutionary potential games on lattices
,”
Phys. Rep.
624
,
1
60
(
2016
).
21.
F. C.
Santos
and
J. M.
Pacheco
, “
Scale-free networks provide a unifying framework for the emergence of cooperation
,”
Phys. Rev. Lett.
95
,
098104
(
2005
).
22.
Z.
Wang
,
L.
Wang
,
A.
Szolnoki
, and
M.
Perc
, “
Evolutionary games on multilayer networks: A colloquium
,”
Eur. Phys. J. B
88
,
1
15
(
2015
).
23.
Y.
Mao
,
Z.
Rong
,
X.
Xu
, and
Z.
Han
, “
Influence of diverse timescales on the evolution of cooperation in a double-layer lattice
,”
Front. Phys.
11
,
1272395
(
2023
).
24.
S.
Majhi
,
M.
Perc
, and
D.
Ghosh
, “
Dynamics on higher-order networks: A review
,”
J. R. Soc. Interface
19
,
20220043
(
2022
).
25.
D.
Ghosh
,
M.
Frasca
,
A.
Rizzo
,
S.
Majhi
,
S.
Rakshit
,
K.
Alfaro-Bittner
, and
S.
Boccaletti
, “
The synchronized dynamics of time-varying networks
,”
Phys. Rep.
949
,
1
63
(
2022
).
26.
Y.
Mao
,
Z.
Rong
, and
Z.-X.
Wu
, “
Effect of collective influence on the evolution of cooperation in evolutionary prisoner’s dilemma games
,”
Appl. Math. Comput.
392
,
125679
(
2021
).
27.
J.
Qin
,
Y.
Chen
,
W.
Fu
,
Y.
Kang
, and
M. M.
Perc
, “
Neighborhood diversity promotes cooperation in social dilemmas
,”
IEEE Access
6
,
5003
5009
(
2017
).
28.
S.
Wang
,
X.
Chen
,
Z.
Xiao
, and
A.
Szolnoki
, “
Decentralized incentives for general well-being in networked public goods game
,”
Appl. Math. Comput.
431
,
127308
(
2022
).
29.
Z.
Wang
,
A.
Szolnoki
, and
M.
Perc
, “
Rewarding evolutionary fitness with links between populations promotes cooperation
,”
J. Theor. Biol.
349
,
50
56
(
2014
).
30.
M.
Feng
,
S.
Han
,
Q.
Li
,
J.
Wu
, and
J.
Kurths
, “
Harmful strong agents and asymmetric interaction can promote the frequency of cooperation in the snowdrift game
,”
Chaos, Solitons Fractals
175
,
114068
(
2023
).
31.
A.
Szolnoki
and
M.
Perc
, “
Effectiveness of conditional punishment for the evolution of public cooperation
,”
J. Theor. Biol.
325
,
34
41
(
2013
).
32.
J.
Wang
,
S.
Guo
,
C.
Xia
, and
M.
Perc
, “
Utility coupling promotes cooperation in multiplayer snowdrift games on interdependent simplicial networks
,”
Eur. Phys. J.: Spec. Top.
(published online 2023).
33.
Y.
Zhang
,
Z.
Zeng
,
B.
Pi
, and
M.
Feng
, “
An evolutionary game with revengers and sufferers on complex networks
,”
Appl. Math. Comput.
457
,
128168
(
2023
).
34.
B.
Pi
,
Z.
Zeng
,
M.
Feng
, and
J.
Kurths
, “
Evolutionary multigame with conformists and profiteers based on dynamic complex networks
,”
Chaos
32
,
023117
(
2022
).
35.
C.
Xia
,
J.
Wang
,
M.
Perc
, and
Z.
Wang
, “
Reputation and reciprocity
,”
Phys. Life Rev.
46
,
8
45
(
2023
).
36.
Z.
Rong
,
Z.-X.
Wu
,
X.
Li
,
P.
Holme
, and
G.
Chen
, “
Heterogeneous cooperative leadership structure emerging from random regular graphs
,”
Chaos
29
,
103103
(
2019
).
37.
A.
McAvoy
and
C.
Hauert
, “
Asymmetric evolutionary games
,”
PLoS Comput. Biol.
11
,
e1004349
(
2015
).
38.
R.
Dawkins
,
The Selfish Gene
(
Oxford University Press
,
2016
).
39.
J.
Hofbauer
, “
Evolutionary dynamics for bimatrix games: A hamiltonian system?
,”
J. Math. Biol.
34
,
675
688
(
1996
).
40.
C.
Wang
and
A.
Szolnoki
, “
Involution game with spatio-temporal heterogeneity of social resources
,”
Appl. Math. Comp.
430
,
127307
(
2022
).
41.
J.-X.
Han
and
R.-W.
Wang
, “
Complex interactions promote the frequency of cooperation in snowdrift game
,”
Physica A
609
,
128386
(
2023
).
42.
M.
Feng
,
B.
Pi
,
L.-J.
Deng
, and
J.
Kurths
, “
An evolutionary game with the game transitions based on the markov process
,”
IEEE Trans. Syst. Man Cybern.: Syst.
54
,
609
621
(
2024
).
43.
J. K.
Goeree
and
C. A.
Holt
, “
Stochastic game theory: For playing games, not just for doing theory
,”
Proc. Natl. Acad. Sci.
96
,
10564
10567
(
1999
).
44.
J. F.
Mertens
and
A.
Neyman
, “
Stochastic games
,”
Int. J. Game Theory
10
,
53
66
(
1981
).
45.
Q.
Su
,
A.
McAvoy
,
L.
Wang
, and
M. A.
Nowak
, “
Evolutionary dynamics with game transitions
,”
Proc. Natl. Acad. Sci.
116
,
25398
25404
(
2019
).
46.
Z.
Zeng
,
Q.
Li
, and
M.
Feng
, “
Spatial evolution of cooperation with variable payoffs
,”
Chaos
32
,
073118
(
2022
).
47.
W.-B.
Du
,
X.-B.
Cao
,
M.-B.
Hu
, and
W.-X.
Wang
, “
Asymmetric cost in snowdrift game on scale-free networks
,”
Europhys. Lett.
87
,
60004
(
2009
).
48.
C.
Hauert
,
C.
Saade
, and
A.
McAvoy
, “
Asymmetric evolutionary games with environmental feedback
,”
J. Theor. Biol.
462
,
347
360
(
2019
).
49.
V.
Capraro
and
M.
Perc
, “
Mathematical foundations of moral preferences
,”
J. R. Soc. Interface
18
,
20200880
(
2021
).
50.
I.
Samoylenko
,
D.
Aleja
,
E.
Primo
,
K.
Alfaro-Bittner
,
E.
Vasilyeva
,
K.
Kovalenko
,
D.
Musatov
,
A. M.
Raigorodskii
,
R.
Criado
,
M.
Romance
et al., “
Why are there six degrees of separation in a social network?
,”
Phys. Rev. X
13
,
021032
(
2023
).
You do not currently have access to this content.