Underwater glider (UG) plays an important role in ocean observation and exploration for a more efficient and deeper understanding of complex ocean environment. Timely identifying the motion states of UG is conducive for timely attitude adjustment and detection of potential anomalies, thereby improving the working reliability of UG. Combining limited penetrable visibility graph (LPVG) and graph convolutional networks (GCN) with self-attention mechanisms, we propose a novel method for motion states identification of UG, which is called as visibility graph and self-attention mechanism-based graph convolutional network (VGSA-GCN). Based on the actual sea trial data of UG, we chose the attitude angle signals of motion states related sensors collected by the control system of UG as the research object and constructed complex networks based on the LPVG method from pitch angle, roll angle, and heading angle data in diving and climbing states. Then, we build a self-attention mechanism-based GCN framework and classify the graphs under different motion states constructed by a complex network. Compared with support vector machines, convolutional neural network, and GCN without self-attention pooling layer, the proposed VGSA-GCN method can more accurately distinguish the diving and climbing states of UG. Subsequently, we analyze the variation of the transitivity coefficient corresponding to these two motion states. The results suggest that the coordination of the various sensors in the attitude adjustment unit during diving becomes closer and more efficient, which corresponds to the higher network measure of the diving state compared to the climbing state.

1.
A.
Sahoo
,
S. K.
Dwivedy
, and
P. S.
Robi
, “
Advancements in the field of autonomous underwater vehicle
,”
Ocean Eng.
181
,
145
160
(
2019
).
2.
E.
Anderlini
,
G.
Salavasidis
,
C.A.
Harris
,
A.
Lorenzo
,
A.B.
Phillips
, and
G.
Thomas
, “
Autonomous detection of the loss of a wing for underwater gliders
,” in
IEEE /OES
(
IEEE
,
2021
).
3.
J.
Li
,
Z.
Tian
,
G.
Zhang
, and
W.
Li
, “
Multi-AUV formation predictive control based on CNN-LSTM under communication constraints
,”
J. Mar. Sci. Eng.
11
(
4
),
873
(
2023
).
4.
R. R.
Murphy
, “
Designing a robot to recover a sunken submarine is hard
,”
Sci. Rob.
8
(
81
),
eadj8287
(
2023
).
5.
L.
Merckelbach
,
A.
Berger
,
G.
Krahmann
,
M.
Dengler
, and
J. R.
Carpenter
, “
A dynamic flight model for Slocum gliders and implications for turbulence microstructure measurements
,”
J. Atmos. Ocean Technol.
36
,
281
296
(
2019
).
6.
T.
Fossen
and
O. E.
Fjellstad
, “
Nonlinear modelling of marine vehicles in 6 degrees of freedom
,”
Math. Model. Syst.
1
(
1
),
17
27
(
1995
).
7.
J. D.
Weiss
and
N. E.
Du Toit
, “
Real-time dynamic model learning and adaptation for underwater vehicles
,” in
Proceedings of the IEEE Conference on Oceans
(IEEE,
2013
), pp. 1–10.
8.
C.
Deutsch
,
A.
Chiche
,
S.
Bhat
,
C.
Lagergren
,
G.
Lindbergh
, and
J.
Kuttenkeuler
, “
Evaluation of energy management strategies for fuel cell/battery-powered underwater vehicles against field trial data
,”
Energy Convers. Manage.: X
14
,
100193
(
2022
).
9.
A. L.
Ellefsen
,
V.
Asoy
,
S.
Ushakov
, and
H.
Zhang
, “
A comprehensive survey of prognostics and health management based on deep learning for autonomous ships
,”
IEEE Trans. Reliab.
68
,
720
740
(
2019
).
10.
S.
Liu
,
M.
Ozay
,
T.
Okatani
,
H.
Xu
,
K.
Sun
, and
Y.
Lin
, “
Detection and pose estimation for short-range vision-based underwater docking
,”
IEEE Access
7
,
2720
2749
(
2019
).
11.
H.
Sang
,
Y.
Zhou
,
X.
Sun
, and
S.
Yang
, “
Heading tracking control with an adaptive hybrid control for under actuated underwater glider
,”
ISA Trans.
80
,
554
563
(
2018
).
12.
J.
Hao
,
G. S.
Zhang
,
W. Q.
Liu
,
H. M.
Zou
, and
Y. H.
Wang
, “
Autotune control algorithm based on relay feedback and adaptive neural network for attitude tracking of nonlinear AUG system
,”
Ocean Eng.
250
,
111051
(
2022
).
13.
Z. W.
Li
,
F.
Liu
,
W. J.
Yang
,
S. H.
Peng
, and
J.
Zhou
, “
A survey of convolutional neural networks: Analysis, applications, and prospects
,”
IEEE Trans. Neural Networks Learn. Syst.
33
(
12
),
6999
7019
(
2022
).
14.
J. N.
Zhang
,
X. Y.
Xin
,
Y. C.
Shang
,
Y. L.
Wang
, and
L.
Zhang
, “
Nonstationary significant wave height forecasting with a hybrid VMD-CNN model
,”
Ocean Eng.
285
(
1
),
115338
(
2023
).
doi:10.1016/j.oceaneng.2023.115338
15.
S. K.
Maurya
,
X.
Liu
, and
T.
Murata
, “
Feature selection: Key to enhance node classification with graph neural networks
,”
CAAI Trans. Intell. Technol.
8
(
1
),
14
28
(
2023
).
16.
Z.
Huang
,
Y.
Tang
, and
Y.
Chen
, “
A graph neural network-based node classification model on class-imbalanced graph data
,”
Knowl. Based Syst.
244
,
108538
(
2022
).
17.
Y.
Xie
,
S.
Lv
,
Y.
Qian
,
C.
Wen
, and
J.
Liang
, “
Active and semi-supervised graph neural networks for graph classification
,”
IEEE Trans. Big Data
8
(
4
),
920
932
(
2022
).
18.
M. G.
Morshed
,
T.
Sultana
, and
Y.-K.
Lee
, “
LeL-GNN: Learnable edge sampling and line based graph neural network for link prediction
,”
IEEE Access
11
,
56083
56097
(
2023
).
19.
H. H.
Chou
,
C. T.
Hsu
,
C. W.
Hsu
,
K. H.
Yao
,
H. C.
Wang
, and
S. Y.
Hsieh
, “
Novel algorithm for improved protein classification using graph similarity
,”
IEEE-ACM Trans. Comput. Biol. Bioinform.
19
(
6
),
3135
3143
(
2022
).
20.
D.
Park
,
Z.
Erickson
,
T.
Bhattacharjee
, and
C. C.
Kemp
, “
Multimodal execution monitoring for anomaly detection during robot manipulation
,” in
IEEE International Conference on Robotics and Automation
(
IEEE
,
2016
), pp.
407
414
.
21.
C.
Ding
,
S.
Sun
, and
J.
Zhao
, “
MST-GAT: A multimodal spatial-temporal graph attention network for time series anomaly detection
,”
Inform. Fus.
89
,
527
536
(
2023
).
22.
A.
Agarwal
,
R. K.
Guntu
,
A.
Banerjee
,
M. A.
Gadhawe
, and
N.
Marwan
, “
A complex network approach to study the extreme precipitation patterns in a river basin
,”
Chaos
32
(
1
),
013113
(
2022
).
23.
Z. H.
Lu
,
W. J.
Dong
,
B.
Lu
,
N. M.
Yuan
,
Z. G.
Ma
,
M. I.
Bogachev
, and
J.
Kurths
, “
Early warning of the Indian Ocean Dipole using climate network analysis
,”
Proc. Natl. Acad. Sci.
119
(
11
),
e2109089119
(
2022
).
24.
M.
Gao
,
Y.
Zhao
,
Z.
Wang
, and
Y. Q.
Wang
, “
A modified extreme event-based synchronicity measure for climate time series
,”
Chaos
32
(
3
),
023105
(
2023
).
25.
X.
Wang
,
Y.
Zhang
,
L.
Wang
,
D.
Lu
, and
G.
Zeng
, “
Robustness evaluation method for unmanned aerial vehicle swarms based on complex network theory
,”
Chin. J. Aeronaut.
33
(
1
),
352
364
(
2020
).
26.
Y.-H.
Wang
,
X.-R.
Shen
,
S.-Q.
Yang
, and
Z.-K.
Gao
, “
Three-dimensional dynamic analysis of observed mesoscale eddy in the South China Sea based on complex network theory
,”
EPL
128
(
6
),
60005
(
2019
).
27.
L.
Lacasa
,
B.
Luque
,
F.
Ballesteros
,
J.
Luque
, and
J. C.
Nuno
, “
From time series to complex networks: The visibility graph
,”
Proc. Natl. Acad. Sci.
105
,
4972
4975
(
2008
).
28.
Z. K.
Gao
,
W.
Guo
,
Q.
Cai
,
C.
Ma
,
Y. B.
Zhang
, and
J.
Kurths
, “
Characterization of SSMVEP-based EEG signals using multiplex limited penetrable horizontal visibility graph
,”
Chaos
27
(
9
), 073119 (
2019
).
29.
Q.
Xuan
,
J.
Zhou
,
K.
Qiu
,
D.
Xu
,
S.
Zheng
, and
X.
Yang
, “
CLPVG: Circular limited penetrable visibility graph as a new network model for time series
,”
Chaos
32
(
1
),
013130
(
2022
).
doi:10.1063/5.0048243
30.
V. T.
Hoang
,
H.-J.
Jeon
,
E.-S.
You
,
Y.
Yoon
,
S.
Jung
, and
O.-J.
Lee
, “
Graph representation learning and its applications: A survey
,”
Sensors
23
(
8
),
4168
(
2023
).
31.
C.
Wang
,
Y.
Wang
,
R.
Zhang
, and
W.
Niu
, “
Analysis of roll center compensation method for underwater gliders based on deep learning
,”
Ocean Eng.
246
,
110529
(
2022
).
32.
Z. K.
Gao
,
L. D.
Hu
,
T. T.
Zhou
, and
N. D.
Jin
, “
Limited penetrable visibility graph from two-phase flow for investigating flow pattern dynamics
,”
Acta Phys. Sin.
62
110507
(
2013
).
33.
T. T.
Zhou
,
N. D.
Jin
,
Z. K.
Gao
, and
Y. B.
Luo
, “
Limited penetrable visibility graph for establishing complex network from time series
,”
Acta Phys. Sin.
61
(
3
),
030506
(
2012
).
34.
Z. H.
Wu
,
S. R.
Pan
,
F. W.
Chen
,
G. D.
Long
,
C. Q.
Zhang
, and
P. S.
Yu
, “
A comprehensive survey on graph neural networks
,”
IEEE Trans. Neural Networks and Learn. Syst.
32
(
1
),
4
24
(
2021
).
35.
J.
Gilmer
,
S. S.
Schoenholz
,
P. F.
Riley
,
O.
Vinyals
, and
G. E.
Dahl
, “
Neural message passing for quantum chemistry
,” in
Proceedings of the 34nd International Conference on Machine Learning
(JMLR, 2017), Vol. 70, pp.
1263–1272
.
36.
F. M.
Bianchi
,
D.
Grattarola
,
L.
Livi
, and
C.
Alippi
, “
Graph neural networks with convolutional ARMA filters
,”
IEEE Trans. Pattern Anal.
44
(
7
),
3496
3507
(
2022
).
37.
C.
Bodnar
,
C.
Cangea
, and
P.
Liò
, “
Deep graph mapper: Seeing graphs through the neural lens
,”
Front. Big Data
4
,
680535
(
2021
).
38.
L.
Zhuo
,
Y.
Chen
,
B.
Song
,
Y.
Liu
, and
Y.
Su
, “
A model for predicting ncRNA-protein interactions based on graph neural networks and community detection
,”
Methods
207
,
74
80
(
2022
).
39.
X. L.
Fan
,
M. G.
Gong
,
Y.
Wu
,
A. K.
Qin
, and
Y.
Xie
, “
Propagation enhanced neural message passing for graph representation learning
,”
IEEE Trans. Knowl. Data Eng.
35
(
2
),
1952
1964
(
2023
).
40.
M. A.
Hearst
, “
Support vector machines
,”
IEEE Intell. Syst. Appl.
13
(
4
),
18
28
(
1998
).
41.
A.
Khan
,
A.
Sohail
,
U.
Zahoora
, and
A. S.
Qureshi
, “
A survey of the recent architectures of deep convolutional neural networks
,”
Artif. Intell. Rev.
53
(
8
),
5455
5516
(
2020
).
42.
M. E. J.
Newman
, “
Communities, modules and large-scale structure in networks
,”
Nat. Phys.
8
(
1
),
25
31
(
2012
).
43.
C.
Stegehuis
, “
Closure coefficients in scale-free complex networks
,”
J. Complex Networks
8
(
3
),
cnaa020
(
2020
).
44.
N.
Marwan
and
J.
Kurths
, “
Complex network based techniques to identify extreme events and (sudden) transitions in spatio-temporal systems
,”
Chaos
25
(
9
),
097609
(
2015
).
You do not currently have access to this content.