The description of neuronal activity has been of great importance in neuroscience. In this field, mathematical models are useful to describe the electrophysical behavior of neurons. One successful model used for this purpose is the Adaptive Exponential Integrate-and-Fire (Adex), which is composed of two ordinary differential equations. Usually, this model is considered in the standard formulation, i.e., with integer order derivatives. In this work, we propose and study the fractal extension of Adex model, which in simple terms corresponds to replacing the integer derivative by non-integer. As non-integer operators, we choose the fractal derivatives. We explore the effects of equal and different orders of fractal derivatives in the firing patterns and mean frequency of the neuron described by the Adex model. Previous results suggest that fractal derivatives can provide a more realistic representation due to the fact that the standard operators are generalized. Our findings show that the fractal order influences the inter-spike intervals and changes the mean firing frequency. In addition, the firing patterns depend not only on the neuronal parameters but also on the order of respective fractal operators. As our main conclusion, the fractal order below the unit value increases the influence of the adaptation mechanism in the spike firing patterns.

1.
R. B.
Northrop
,
Introduction to Dynamic Modeling of Neuro-Sensory Systems
(
CRC Press
,
2001
).
2.
W.
Gerstner
,
W. M.
Kistler
,
R.
Naud
, and
L.
Paninski
,
Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition
, 1st ed. (
Cambridge University Press
,
Cambridge
,
2014
).
3.
A. L.
Hodgkin
and
A. F.
Huxley
, “
A quantitative description of membrane current and its application to conduction and excitation in nerve
,”
J. Physiol.
117
,
500
(
1952
).
4.
J. L.
Hindmarsh
and
R. M.
Rose
, “
A model of neuronal bursting using three coupled first order differential equations
,”
Proc. R. Soc. London, Ser. B
221
,
87
(
1984
).
5.
E. M.
Izhikevich
, “
Resonate-and-fire neurons
,”
Neural Networks
14
,
883
894
(
2001
).
6.
L.
Abbott
, “
Lapicque’s introduction of the integrate-and-fire model neuron (1907)
,”
Brain Res. Bull.
50
,
303
304
(
1999
).
7.
R.
Brette
and
W.
Gerstner
, “
Adaptive exponential integrate-and-fire model as an effective description of neuronal activity
,”
J. Neurophysiol.
94
,
3637
3642
(
2005
).
8.
N. F.
Rulkov
, “
Regularization of synchronized chaotic bursts
,”
Phys. Rev. Lett.
86
,
183
186
(
2001
).
9.
F. S.
Borges
,
J. V. S.
Moreira
,
L. M.
Takarabe
,
W. W.
Lytton
, and
S.
Dura-Bernal
, “
Regularization of synchronized chaotic bursts
,”
Front. Neuroinf.
16
,
884245
(
2022
).
10.
R. L.
Viana
,
F.
Borges
,
K. C.
Iarosz
,
A. M.
Batista
,
S. R.
Lopes
, and
I. L.
Caldas
, “
Dynamic range in a neuron network with electrical and chemical synapses
,”
Commun. Nonlinear Sci. Numer. Simul.
19
,
164
172
(
2014
).
11.
F. S.
Borges
,
E. L.
Lameu
,
A. M.
Batista
,
K. C.
Iarosz
,
M. S.
Baptista
, and
R. L.
Viana
, “
Complementary action of chemical and electrical synapses to perception
,”
Physica A
430
,
236
241
(
2015
).
12.
O.
Kinouchi
and
M. M.
Copelli
, “
Optimal dynamical range of excitable networks at criticality
,”
Nat. Phys.
2
,
348
351
(
2006
).
13.
E.
Sayari
,
A. M.
Batista
,
E. C.
Gabrick
,
K. C.
Iarosz
,
M.
Hansen
,
J. D.
Szezech
, Jr.
, and
F. S.
Borges
, “
Dynamics of a perturbed random neuronal network with burst-timing-dependent plasticity
,”
Eur. Phys. J. Spec. Top.
231
,
4049
4056
(
2022
).
14.
E.
Sayari
,
E. C.
Gabrick
,
F. S.
Borges
,
F. E.
Cruzaniani
,
P. R.
Protachevicz
,
K. C.
Iarosz
,
J. D.
Szezech
, Jr.
, and
A. M.
Batista
, “
Analyzing bursting synchronization in structural connectivity matrix of a human brain under external pulsed currents
,”
Chaos
33
,
033131
(
2023
).
15.
F. S.
Borges
,
E. C.
Gabrick
,
P. R.
Protachevicz
,
G. S. V.
Higa
,
E. L.
Lameu
,
P. X. R.
Rodriguez
,
M. S. A.
Ferraz
,
J. D.
Szezech
, Jr.
,
A. M.
Batista
, and
A. H.
Kihara
, “
Intermittency properties in a temporal lobe epilepsy model
,”
Epilepsy Behav.
139
,
109072
(
2023
).
16.
R.
Naud
,
N.
Marcille
,
C.
Clopath
, and
W.
Gerstner
, “
Firing patterns in the adaptive exponential integrate-and-fire model
,”
Biol. Cybern.
99
,
335
347
(
2008
).
17.
F. S.
Borges
,
P. R.
Protachevicz
,
E. L.
Lameu
,
R. C.
Bonetti
,
K. C.
Iarosz
,
I. L.
Caldas
,
M. S.
Baptista
, and
A. M.
Batista
, “
Synchronised firing patterns in a random network of adaptive exponential integrate-and-fire neuron model
,”
Neural Networks
90
,
1
7
(
2017
).
18.
L.
Hertag
,
J.
Hass
,
T.
Golovko
, and
D.
Durstewitz
, “
An approximation to the adaptive exponential integrate-and-fire neuron model allows fast and predictive fitting to physiological data
,”
Front. Comput. Neurosci.
6
,
62
(
2012
).
19.
R.
Brette
, “
What is the most realistic single- compartment model of spike initiation?
,”
PLoS Comput. Biol.
11
,
e1004114
(
2015
).
20.
J.
Touboul
and
R.
Brette
, “
Dynamics and bifurcations of the adaptive exponential integrate-and-fire model
,”
Biol. Cybern.
99
,
319
334
(
2008
).
21.
P. R.
Protachevicz
,
F. S.
Borges
,
E. L.
Lameu
,
P.
Ji
,
K. C.
Iarosz
,
A. H.
Kihara
,
I. L.
Caldas
,
J. D.
Szezech
, Jr.
,
M. S.
Baptista
,
E. N.
Macau
,
C. G.
Antonopoulos
,
A. M.
Batista
, and
J.
Kurths
, “
Bistable firing pattern in a neural network model
,”
Front. Comput. Neurosci.
13
,
19
(
2019
).
22.
J. D.
Templos-Hernández
,
L. A.
Quezada-Téllez
,
B. M.
González-Hernández
,
G.
Rojas-Vite
,
J. E.
Pineda-Sánchez
,
G.
Fernández-Anaya
, and
E. E.
Rodriguez-Torres
, “
A fractional-order approach to cardiac rhythm analysis
,”
Chaos, Solitons Fractals
147
,
110942
(
2021
).
23.
H.
Jafari
,
R. M.
Ganji
,
N. S.
Nkomo
, and
Y. P.
Lv
, “
A numerical study of fractional order population dynamics model
,”
Res. Phys.
27
,
104456
(
2021
).
24.
E. C.
Gabrick
,
E.
Sayari
,
A. S. M.
de Castro
,
J.
Trobia
,
A. M.
Batista
, and
E. K.
Lenzi
, “
Fractional Schrödinger equation and time dependent potentials
,”
Commun. Nonlinear Sci. Numer. Simul.
123
,
107275
(
2023
).
25.
E. K.
Lenzia
,
E. C.
Gabrick
,
E.
Sayari
,
A. S. M.
de Castro
,
J.
Trobia
, and
A. M.
Batista
, “
Anomalous relaxation and three-level system: A fractional Schrödinger equation approach
,”
Quantum Rep.
5
,
442
458
(
2023
).
26.
V. E.
Tarasov
, “
Fractional generalization of gradient and Hamiltonian systems
,”
J. Phys. A: Math. Gen.
38
,
5929
(
2005
).
27.
A.
Somer
,
A.
Novatski
,
M. K.
Lenzi
,
L. R.
da Silva
, and
E. K.
Lenzi
, “
Photothermal response for the thermoelastic bending effect considering dissipating effects by means of fractional dual-phase-lag theory
,”
Fractal Fract.
7
,
276
(
2023
).
28.
C. M. A.
Pinto
,
A. R. M.
Carvalho
, and
J. N.
Tavares
, “
Time-varying pharmacodynamics in a simple non-integer HIV infection model
,”
Math. Biosci.
307
,
1
12
(
2019
).
29.
V. E.
Tarasov
, “
Mathematical economics: Application of fractional calculus
,”
Mathematics
8
,
660
(
2020
).
30.
S.
Arora
,
T.
Mathur
,
S.
Agarwal
,
K.
Tiwari
, and
P.
Gupta
, “
Applications of fractional calculus in computer vision: A survey
,”
Neurocomputing
489
,
407
428
(
2022
).
31.
A.
Giusti
, “
General fractional calculus and Prabhakar’s theory
,”
Commun. Nonlinear Sci. Numer. Simul.
83
,
105114
(
2020
).
32.
F.
Brouers
and
T. J.
Al-Musawi
, “
Brouers-Sotolongo fractal kinetics versus fractional derivative kinetics: A new strategy to analyze the pollutants sorption kinetics in porous materials
,”
J. Hazard. Mater.
350
,
162
168
(
2018
).
33.
W.
Chen
,
H.
Sun
,
X.
Zhang
, and
D.
Korosak
, “
Anomalous diffusion modeling by fractal and fractional derivatives
,”
Comput. Math. Appl.
59
,
1754
1758
(
2010
).
34.
Q.
Wang
,
J.
He
, and
Z.
Li
, “
Fractional model for heat conduction in polar bear hairs
,”
Therm. Sci.
16
,
339
342
(
2012
).
35.
J. A.
He
, “
A tutorial review on fractal spacetime and fractional calculus
,”
Int. J. Theor. Phys.
326
,
3698
3718
(
2014
).
36.
D.
Jun
,
Z.
Guang-jun
,
X.
Yong
,
Y.
Hong
, and
W.
Jue
, “
Dynamic behavior analysis of fractional-order Hindmarsh–Rose neuronal model
,”
Cognit. Neurodyn.
8
,
167
175
(
2014
).
37.
Y.
Yu
,
M.
Shi
,
M. C. H.
Kang
, and
B.
Bao
, “
Hidden dynamics in a fractional-order memristive Hindmarsh–Rose model
,”
Nonlinear Dyn.
100
,
891
906
(
2020
).
38.
A. M.
Nagy
and
N. H.
Sweilam
, “
An efficient method for solving fractional Hodgkin–Huxley model
,”
Phys. Lett. A
378
,
1980
1984
(
2014
).
39.
S. H.
Weinberg
, “
Membrane capacitive memory alters spiking in neurons described by the fractional-order Hodgkin-Huxley model
,”
PLoS One
10
,
e0126629
(
2015
).
40.
Y. M.
Lu
,
C. H.
Wang
,
Q. L.
Deng
, and
C.
Xu
, “
The dynamics of a memristor-based rulkov neuron with fractional-order difference
,”
Chin. Phys. B
31
,
060502
(
2022
).
41.
M.
Ma
,
Y.
Lu
,
Z.
Li
,
Y.
Sun
, and
C.
Wang
, “
Multistability and phase synchronization of rulkov neurons coupled with a locally active discrete memristor
,”
Fractal Fract.
7
,
82
(
2023
).
42.
W. W.
Teka
,
R. K.
Upadhayay
, and
A.
Mondal
, “
Fractional-order leaky integrate-and-fire model with long-term memory and power law dynamics
,”
Neural Networks
93
,
110
125
(
2017
).
43.
W.
Teka
,
T. M.
Marinov
, and
F.
Santamaria
, “
Neuronal spike timing adaptation described with a fractional leaky integrate-and-fire model
,”
PLoS Comput. Biol.
10
,
e100326
(
2014
).
44.
W.
Chen
, “
Time–space fabric underlying anomalous diffusion
,”
Chaos, Solitons Fractals
28
,
923
929
(
2006
).
45.
W.
Chen
,
F.
Wang
,
B.
Zheng
, and
W.
Cai
, “
Non-Euclidean distance fundamental solution of Hausdorff derivative partial differential equations
,”
Eng. Anal. Boundary Elem.
84
,
213
219
(
2017
).
46.
J. H.
He
, “
Fractal calculus and its geometrical explanation
,”
Res. Phys.
10
,
272
276
(
2013
).
47.
W.
Chen
,
Y.
Liang
, and
W.
Cai
,
Hausdorff Calculus: Applications to Fractal Systems
(
De Gruyter
,
2019
), pp. 1–148.
48.
L.
Nottale
, “
On time in microphysics
,”
Acad. Sci. Paris C. R. Ser. Sci. Math.
306
,
341
346
(
1988
).
49.
A. B.
Hamissa
,
F.
Brouers
,
A. M. C.
Ncibi
, and
M.
Seffen
, “
Kinetic modeling study on methylene blue sorption onto science Agave americana fibers: Fractal kinetics and regeneration studies
,”
Sep. Sci. Technol.
48
,
2834
2842
(
2013
).
50.
A. M. B.
Hamissa
,
F.
Brouers
,
B.
Mahjoub
, and
M.
Seffen
, “
Adsorption of textile dyes using agave americana (l.) fibres: Equilibrium and kinetics modelling
,”
Adsort. Sci. Technol.
25
,
311
325
(
2007
).
51.
S.
Figaro
,
J. P.
Avril
,
F.
Brouers
,
A.
Ouensanga
, and
S.
Gaspard
, “
Adsorption studies of molasse’s wastewaters on activated carbon: Modelling with a new fractal kinetic equation and evaluation of kinetic models
,”
J. Hazard. Mater.
161
,
649
656
(
2009
).
52.
M. S. E.
Naschie
,
L.
Marek-Crnjac
,
J. H.
He
, and
M. A.
Helal
, “
Computing the missing dark energy of a clopen universe which is its own multiverse in addition to being both flat and curved
,”
Fractal Spacetime Noncommut. Geom. Quantum High Energy Phys.
3
,
3
10
(
2013
).
53.
M. S. E.
Naschie
, “
A unified newtonian-relativistic quantum resolution of the supposedly missing dark energy of the cosmos and the constancy of the speed of light
,”
Int. J. Mod. Nonlinear Theory Appl.
2
,
43
54
(
2013
).
54.
E. C.
Gabrick
,
E.
Sayari
,
D. L.
Souza
,
F. S.
Borges
,
J.
Trobia
,
E. K.
Lenzi
, and
A. M.
Batista
, “
Fractal and fractional SIS model for syphilis data
,”
Chaos
33
,
093124
(
2023
).
55.
A.
Atangana
and
S.
Qureshi
, “
Modeling attractors of chaotic dynamical systems with fractal–fractional operators
,”
Chaos, Solitons Fractals
123
,
320
337
(
2019
).
56.
F.
Gabbiani
and
C. C.
Koch
, “Principles of spike train analysis,” in Methods in Neuronal Modeling: From Ions to Networks, 2nd ed., edited by C. Koch and I. Segev (MIT Press, Cambridge, 1998), pp. 313–360.
57.
T.
Fardet
,
M.
Ballandras
,
S.
Bottani
,
S.
Métens
, and
P.
Monceaus
, “
Understanding the generation of bursts by adaptive oscillatory neurons
,”
Front. Neurosci.
12
,
41
(
2018
).
58.
D.
Brown
and
P.
Adams
, “
Muscarinic suppression of a novel voltage-sensitive k + current in a vertebrate neurone
,”
Nature
283
,
673
676
(
1980
).
You do not currently have access to this content.