In biological or physical systems, the intrinsic properties of oscillators are heterogeneous and correlated. These two characteristics have been empirically validated and have garnered attention in theoretical studies. In this paper, we propose a power-law function existed between the dynamical parameters of the coupled oscillators, which can control discontinuous phase transition switching. Unlike the special designs for the coupling terms, this generalized function within the dynamical term reveals another path for generating the first-order phase transitions. The power-law relationship between dynamic characteristics is reasonable, as observed in empirical studies, such as long-term tremor activity during volcanic eruptions and ion channel characteristics of the Xenopus expression system. Our work expands the conditions that used to be strict for the occurrence of the first-order phase transitions and deepens our understanding of the impact of correlation between intrinsic parameters on phase transitions. We explain the reason why the continuous phase transition switches to the discontinuous phase transition when the control parameter is at a critical value.

1.
A.
Pikvosky
,
M.
Rosenblum
, and
J.
Kurths
,
Synchronization: A Universal Concept in Nonlinear Sciences
(
Cambridge University Press
,
2003
), pp. 28–41.
2.
S.
Boccaletti
,
A. N.
Pisarchik
,
C. I.
Del Genio
, and
A.
Amann
,
Synchronization: From Coupled Systems to Complex Networks
(
Cambridge University Press
,
2018
), pp. 1–26.
3.
A.
Jenkins
, “
Self-oscillation
,”
Phys. Rep.
525
(
2
),
167
222
(
2013
).
4.
S. A.
Wen
et al., “
Spatiotemporal single-cell analysis of gene expression in the mouse suprachiasmatic nucleus
,”
Nat. Neurosci.
23
(
3
),
456
467
(
2020
).
5.
M. H.
Hastings
,
E. S.
Maywood
, and
M.
Brancaccio
, “
Generation of circadian rhythms in the suprachiasmatic nucleus
,”
Nat. Rev. Neurosci.
19
(
8
),
453
469
(
2018
).
6.
E. M.
Jeong
et al., “
Systematic modeling-driven experiments identify distinct molecular clockworks underlying hierarchically organized pacemaker neurons
,”
Proc. Natl. Acad. Sci. U.S.A.
119
(
8
),
e2113403119
(
2022
).
7.
A. B.
Webb
,
S. R.
Taylor
,
K. A.
Thoroughman
,
F. J.
Doyle III
, and
E. D.
Herzog
, “
Weakly circadian cells improve resynchrony
,”
PLoS Comput. Biol.
8
(
11
),
e1002787
(
2012
).
8.
P. O.
Westermark
,
D. K.
Welsh
,
H.
Okamura
, and
H.
Herzel
, “
Quantification of circadian rhythms in single cells
,”
PLoS Comput. Biol.
5
(
11
),
e1000580
(
2009
).
9.
M. S.
Imtiaz
,
J.
Zhao
,
K.
Hosaka
,
P. Y.
von der Weid
,
M.
Crowe
, and
D. F.
van Helden
, “
Pacemaking through Ca2 + stores interacting as coupled oscillators via membrane depolarization
,”
Biophys. J.
92
(
11
),
3843
3861
(
2007
).
10.
V. A.
Maltsev
and
E. G.
Lakatta
, “
Dynamic interactions of an intracellular Ca2 + clock and membrane ion channel clock underlie robust initiation and regulation of cardiac pacemaker function
,”
Cardiovasc. Res.
77
(
2
),
274
284
(
2008
).
11.
L.
Rensing
,
U.
Meyer-Grahle
, and
P.
Ruoff
, “
Biological timing and the clock metaphor: Oscillatory and hourglass mechanisms
,”
Chronobiol. Int.
18
(
3
),
329
369
(
2001
).
12.
M.
Panagiotou
,
V. V.
Vyazovskiy
,
J. H.
Meijer
, and
T.
Deboer
, “
Differences in electroencephalographic non-rapid-eye movement sleep slow-wave characteristics between young and old mice
,”
Sci. Rep.
7
(
1
),
43656
(
2017
).
13.
E. D.
Buhr
,
S. H.
Yoo
, and
J. S.
Takahashi
, “
Phase-resetting sensitivity of the suprachiasmatic nucleus and oscillator amplitude: Reply to letter by Ruby
,”
J. Biol. Rhythms
26
(
4
),
371
373
(
2011
).
14.
V. D.
Longo
and
S.
Panda
, “
Fasting, circadian rhythms, and time-restricted feeding in healthy lifespan
,”
Cell Metab.
23
(
6
),
1048
1059
(
2016
).
15.
W. J.
Freeman
,
L. J.
Rogers
,
M. D.
Holmes
, and
D. L.
Silbergeld
, “
Spatial spectral analysis of human electrocorticograms including the alpha and gamma bands
,”
J. Neurosci. Methods
95
(
2
),
111
121
(
2000
).
16.
J. B.
Gao
, “
Analysis of amplitude and frequency variations of essential and Parkinsonian tremors
,”
Med. Biol. Eng. Comput.
42
,
345
349
(
2004
).
17.
A.
Nazerian
,
S.
Panahi
, and
F.
Sorrentino
, “
Synchronization in networked systems with large parameter heterogeneity
,”
Commun. Phys.
6
(
1
),
253
(
2023
).
18.
B. W.
Qin
,
L.
Zhao
, and
W.
Lin
, “
A frequency-amplitude coordinator and its optimal energy consumption for biological oscillators
,”
Nat. Commun.
12
(
1
),
5894
(
2021
).
19.
Z.
Zhong
,
W.
Lin
, and
B. W.
Qin
, “
Modulating biological rhythms: A noncomputational strategy harnessing nonlinearity and decoupling frequency and amplitude
,”
Phys. Rev. Lett.
131
(
13
),
138401
(
2023
).
20.
F. A.
Rodrigues
,
T. K. D.
Peron
,
P.
Ji
, and
J.
Kurths
, “
The Kuramoto model in complex networks
,”
Phys. Rep.
610
,
1
98
(
2016
).
21.
D.
Pazó
, “
Thermodynamic limit of the first-order phase transition in the Kuramoto model
,”
Phys. Rev. E
72
(
4
),
046211
(
2005
).
22.
J.
Gómez-Gardeñes
,
S.
Gómez
,
A.
Arenas
, and
Y.
Moreno
, “
Explosive synchronization transitions in scale-free networks
,”
Phys. Rev. Lett.
106
(
12
),
128701
(
2011
).
23.
B. C.
Coutinho
,
A. V.
Goltsev
,
S. N.
Dorogovtsev
, and
J. F. F.
Mendes
, “
Kuramoto model with frequency-degree correlations on complex networks
,”
Phys. Rev. E
87
(
3
),
032106
(
2013
).
24.
X.
Zhang
,
X.
Hu
,
J.
Kurths
, and
Z.
Liu
, “
Explosive synchronization in a general complex network
,”
Phys. Rev. E
88
(
1
),
010802
(
2013
).
25.
X.
Zhang
,
S.
Boccaletti
,
S.
Guan
, and
Z.
Liu
, “
Explosive synchronization in adaptive and multilayer networks
,”
Phys. Rev. Lett.
114
(
3
),
038701
(
2015
).
26.
C.
Xu
,
X.
Wang
, and
P. S.
Skardal
, “
Generic criterion for explosive synchronization in heterogeneous phase oscillator populations
,”
Phys. Rev. Res.
4
(
3
),
L032033
(
2022
).
27.
W.
Zou
,
D. V.
Senthilkumar
,
M.
Zhan
, and
J.
Kurths
, “
Quenching, aging, and reviving in coupled dynamical networks
,”
Phys. Rep.
931
,
1
72
(
2021
).
28.
A.
Koseska
,
E.
Volkov
, and
J.
Kurths
, “
Transition from amplitude to oscillation death via Turing bifurcation
,”
Phys. Rev. Lett.
111
(
2
),
024103
(
2013
).
29.
R. E.
Mirollo
and
S. H.
Strogatz
, “
Amplitude death in an array of limit-cycle oscillators
,”
J. Stat. Phys.
60
,
245
262
(
1990
).
30.
P. C.
Matthews
and
S. H.
Strogatz
, “
Phase diagram for the collective behavior of limit-cycle oscillators
,”
Phys. Rev. Lett.
65
(
14
),
1701
(
1990
).
31.
H.
Daido
and
K.
Nakanishi
, “
Aging transition and universal scaling in oscillator networks
,”
Phys. Rev. Lett.
93
(
10
),
104101
(
2004
).
32.
H.
Bi
,
X.
Hu
,
X.
Zhang
,
Y.
Zou
,
Z.
Liu
, and
S.
Guan
, “
Explosive oscillation death in coupled Stuart-Landau oscillators
,”
Europhys. Lett.
108
(
5
),
50003
(
2014
).
33.
H.
Bi
,
X.
Hu
,
S.
Boccaletti
,
X.
Wang
,
Y.
Zou
,
Z.
Liu
, and
S.
Guan
, “
Coexistence of quantized, time dependent, clusters in globally coupled oscillators
,”
Phys. Rev. Lett.
117
(
20
),
204101
(
2016
).
34.
J. M.
Zhang
,
X.
Li
,
Y.
Zou
, et al.
Novel transition and Bellerophon state in coupled Stuart–Landau oscillators
,”
Front. Phys.
14
,
33603
(
2019
).
35.
M. C.
Cross
,
A.
Zumdieck
,
R.
Lifshitz
, and
J. L.
Rogers
, “
Synchronization by nonlinear frequency pulling
,”
Phys. Rev. Lett.
93
(
22
),
224101
(
2004
).
36.
M. H.
Matheny
,
M.
Grau
,
L. G.
Villanueva
,
R. B.
Karabalin
,
M. C.
Cross
, and
M. L.
Roukes
, “
Phase synchronization of two anharmonic nanomechanical oscillators
,”
Phys. Rev. Lett.
112
(
1
),
014101
(
2014
).
37.
A. P.
Millán
,
J. J.
Torres
, and
G.
Bianconi
, “
Explosive higher-order Kuramoto dynamics on simplicial complexes
,”
Phys. Rev. Lett.
124
(
21
),
218301
(
2020
).
38.
R.
Ghorbanchian
,
J. G.
Restrepo
,
J. J.
Torres
, and
G.
Bianconi
, “
Higher-order simplicial synchronization of coupled topological signals
,”
Commun. Phys.
4
(
1
),
120
(
2021
).
39.
J.
Wang
,
C.
Gu
, and
P.
Ji
, “
Frequency-amplitude correlation inducing first-order phase transition in coupled oscillators
,”
New J. Phys.
24
(
7
),
073038
(
2022
).
40.
U.
Abraham
,
A. E.
Granada
,
P. O.
Westermark
,
M.
Heine
,
A.
Kramer
, and
H.
Herzel
, “
Coupling governs entrainment range of circadian clocks
,”
Mol. Syst. Biol.
6
(
1
),
438
(
2010
).
41.
C.
Gu
and
H.
Yang
, “
Differences in intrinsic amplitudes of neuronal oscillators improve synchronization in the suprachiasmatic nucleus
,”
Chaos
27
(
9
),
093108
(
2017
).
42.
C.
Gu
,
H.
Yang
,
M.
Wang
, and
J. H.
Rohling
, “
Heterogeneity in relaxation rate improves the synchronization of oscillatory neurons in a model of the SCN
,”
Chaos
29
(
1
),
013103
(
2019
).
43.
S.
Dixit
,
S. N.
Chowdhury
,
D.
Ghosh
, and
M. D.
Shrimali
, “
Dynamic interaction induced explosive death
,”
Europhys. Lett.
133
(
4
),
40003
(
2021
).
44.
U. K.
Verma
,
A.
Sharma
,
N. K.
Kamal
, and
M. D.
Shrimali
, “
Explosive death in complex network
,”
Chaos
29
(
6
),
063127
(
2019
).
45.
U. K.
Verma
,
A.
Sharma
,
N. K.
Kamal
,
J.
Kurths
, and
M. D.
Shrimali
, “
Explosive death induced by mean-field diffusion in identical oscillators
,”
Sci. Rep.
7
(
1
),
7936
(
2017
).
46.
N.
Zhao
,
Z.
Sun
,
X.
Yang
, and
W.
Xu
, “
Explosive death of conjugate coupled van der Pol oscillators on networks
,”
Phys. Rev. E
97
(
6
),
062203
(
2018
).
47.
U. K.
Verma
,
S. S.
Chaurasia
, and
S.
Sinha
, “
Explosive death in nonlinear oscillators coupled by quorum sensing
,”
Phys. Rev. E
100
(
3
),
032203
(
2019
).
48.
P. S.
Skardal
and
A.
Arenas
, “
Abrupt desynchronization and extensive multistability in globally coupled oscillator simplexes
,”
Phys. Rev. Lett.
122
(
24
),
248301
(
2019
).
49.
P. S.
Skardal
and
A.
Arenas
, “
Higher order interactions in complex networks of phase oscillators promote abrupt synchronization switching
,”
Commun. Phys.
3
(
1
),
218
(
2020
).
50.
R.
Ghosh
,
U. K.
Verma
,
S.
Jalan
, and
M. D.
Shrimali
, “
First-order transition to oscillation death in coupled oscillators with higher-order interactions
,”
Phys. Rev. E
108
(
4
),
044207
(
2023
).
51.
O.
Sandanbata
,
K.
Obara
,
T.
Maeda
,
R.
Takagi
, and
K.
Satake
, “
Sudden changes in the amplitude-frequency distribution of long-period tremors at Aso volcano, southwest Japan
,”
Geophys. Res. Lett.
42
,
10256
10262
, https://doi.org/10.1002/2015GL066443 (
2015
).
52.
A.
Toib
,
V.
Lyakhov
, and
S.
Marom
, “
Interaction between duration of activity and time course of recovery from slow inactivation in mammalian brain Na + channels
,”
J. Neurosci.
18
(
5
),
1893
1903
(
1998
).
53.
W.
Zhou
,
L.
Chen
,
H.
Bi
,
X.
Hu
,
Z.
Liu
, and
S.
Guan
, “
Explosive synchronization with asymmetric frequency distribution
,”
Phys. Rev. E
92
(
1
),
012812
(
2015
).
54.
W.
Zou
,
S.
He
,
D. V.
Senthilkumar
, and
J.
Kurths
, “
Solvable dynamics of coupled high-dimensional generalized limit-cycle oscillators
,”
Phys. Rev. Lett.
130
(
10
),
107202
(
2023
).
55.
W.
Shing Lee
,
E.
Ott
, and
T. M.
Antonsen
, “
Phase and amplitude dynamics in large systems of coupled oscillators: Growth heterogeneity, nonlinear frequency shifts, and cluster states
,”
Chaos
23
(
3
),
033116
(
2013
).
56.
J.
Wang
and
W.
Zou
, “
Collective behaviors of mean-field coupled Stuart–Landau limit-cycle oscillators under additional repulsive links
,”
Chaos
31
(
7
),
073107
(
2021
).
You do not currently have access to this content.