In this work, we combine nonlinear system control techniques with next-generation reservoir computing, a best-in-class machine learning approach for predicting the behavior of dynamical systems. We demonstrate the performance of the controller in a series of control tasks for the chaotic Hénon map, including controlling the system between unstable fixed points, stabilizing the system to higher order periodic orbits, and to an arbitrary desired state. We show that our controller succeeds in these tasks, requires only ten data points for training, can control the system to a desired trajectory in a single iteration, and is robust to noise and modeling error.
REFERENCES
1
2
E.
Ott
, C.
Grebogi
, and J. A.
Yorke
, “Controlling chaos
,” Phys. Rev. Lett.
64
, 1196
–1199
(1990
). 3
4
E. R.
Weeks
and J. M.
Burgess
, “Evolving artificial neural networks to control chaotic systems
,” Phys. Rev. E
56
, 1531
–1540
(1997
). 5
D. J.
Gauthier
, “Resource letter: CC-1: Controlling chaos
,” Am. J. Phys.
71
, 750
–759
(2003
). 6
E. F.
Camacho
and C. B.
Alba
, Model Predictive Control
(Springer Science & Business Media
, 2013
).7
Z.
Wu
, D.
Rincon
, and P. D.
Christofides
, “Process structure-based recurrent neural network modeling for model predictive control of nonlinear processes
,” J. Process Control
89
, 74
–84
(2020
). 8
A.
Poznyak
, W.
Yu
, and E.
Sanchez
, “Identification and control of unknown chaotic systems via dynamic neural networks
,” IEEE Trans. Circuits Syst. I: Fundam. Theory Appl.
46
, 1491
–1495
(1999
). 9
X.-P.
Zong
and J.
Geng
, “Control chaotic systems based on BP neural network with a new perturbation,” in 2009 International Conference on Wavelet Analysis and Pattern Recognition (IEEE, 2009), pp. 166–170.10
K.
Gokce
and Y.
Uyaroğlu
, “Controlling the chaotic discrete-Hénon system using a feedforward neural network with an adaptive learning rate
,” Turk. J. Electr. Eng. Comput. Sci.
21
, 793
–803
(2013
).11
R.
Matousek
and T.
Hulka
, “Stabilization of higher periodic orbits of the chaotic logistic and Hénon maps using meta-evolutionary approaches,” in 2019 IEEE Congress on Evolutionary Computation (CEC) (IEEE, 2019), pp. 1758–1765.12
R.
Matousek
, R. P.
Lozi
, and T.
Hulka
, “Stabilization of higher periodic orbits of the Lozi and Hénon maps using meta-evolutionary approaches,” in 2021 IEEE Congress on Evolutionary Computation (CEC) (IEEE, 2021), pp. 572–579.13
R.
Senkerik
, Z.
Oplatkova
, and I.
Zelinka
, “Investigation on evolutionary chaos controller synthesis for Hénon map stabilization
,” AIP Conf. Proc.
1389
, 1027
–1030
(2011
).14
I.
Zelinka
, R.
Senkerik
, and E.
Navratil
, “Investigation on evolutionary optimization of chaos control
,” Chaos, Solitons Fractals
40
, 111
–129
(2009
). 15
R.
Matousek
, L.
Dobrovsky
, P.
Minar
, and K.
Mouralova
, “A note about robust stabilization of chaotic Hénon system using grammatical evolution,” in Nostradamus 2014: Prediction, Modeling and Analysis of Complex Systems (Springer, 2014), pp. 219–228.16
T.
Chow
and Y.
Fang
, “A recurrent neural-network-based real-time learning control strategy applying to nonlinear systems with unknown dynamics
,” IEEE Trans. Ind. Electron.
45
, 151
–161
(1998
). 17
H.
Jaeger
and H.
Haas
, “Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication
,” Science
304
, 78
–80
(2004
). 18
W.
Maass
, T.
Natschläger
, and H.
Markram
, “Real-time computing without stable states: A new framework for neural computation based on perturbations
,” Neural Comput.
14
, 2531
–2560
(2002
). 19
T.
Waegeman
, F.
wyffels
, and B.
Schrauwen
, “Feedback control by online learning an inverse model
,” IEEE Trans. Neural Netw. Learn. Syst.
23
, 1637
–1648
(2012
). 20
T.
Waegeman
, M.
Hermans
, and B.
Schrauwen
, “MACOP modular architecture with control primitives
,” Front. Comput. Neurosci.
7
, 99
(2013
). 21
D.
Canaday
, A.
Pomerance
, and D. J.
Gauthier
, “Model-free control of dynamical systems with deep reservoir computing
,” J. Phys.: Complex.
2
, 035025
(2021
).22
A.
Haluszczynski
and C.
Räth
, “Controlling nonlinear dynamical systems into arbitrary states using machine learning
,” Sci. Rep.
11
, 12991
(2021
). 23
X.-Y.
Duan
, X.
Ying
, S.-Y.
Leng
, J.
Kurths
, W.
Lin
, and H.-F.
Ma
, “Embedding theory of reservoir computing and reducing reservoir network using time delays
,” Phys. Rev. Res.
5
, L022041
(2023
). 24
D. J.
Gauthier
, E.
Bollt
, A.
Griffith
, and W. A. S.
Barbosa
, “Next generation reservoir computing
,” Nat. Commun.
12
, 5564
(2021
). 25
W. A. S.
Barbosa
and D. J.
Gauthier
, “Learning spatiotemporal chaos using next-generation reservoir computing
,” Chaos
32
, 093137
(2022
). 26
A.
Haluszczynski
, D.
Köglmayr
, and C.
Räth
, “Controlling dynamical systems to complex target states using machine learning: Next-generation vs classical reservoir computing,” arXiv:2307.07195 (2023).27
J.
Sarangapani
, Neural Network Control of Nonlinear Discrete-Time Systems
(CRC Press, Taylor & Francis
, Boca Raton, FL
, 2006
).28
Y.
Kim
and F.
Lewis
, “Neural network output feedback control of robot manipulators
,” IEEE Trans. Robot. Autom.
15
, 301
–309
(1999
). 29
M.
Hénon
, “A two-dimensional mapping with a strange attractor
,” Commun. Math. Phys.
50
, 69
–77
(1976
).30
F.
Takens
, “Detecting strange attractors in turbulence,” in Dynamical Systems and Turbulence, Warwick 1980, edited by D. Rand and L.-S. Young (Springer, Berlin, 1981), pp. 366–381.31
S.
Boyd
and L.
Chua
, “Fading memory and the problem of approximating nonlinear operators with Volterra series
,” IEEE Trans. Circuits Syst.
32
, 1150
–1161
(1985
). 32
L.
Gonon
, L.
Grigoryeva
, and J.-P.
Ortega
, “Reservoir kernels and Volterra series,” arXiv:2212.14641 (2022).33
H.-L.
Wei
, S. A.
Billings
, and J.
Liu
, “Term and variable selection for non-linear system identification
,” Int. J. Control
77
, 86
–110
(2004
). 34
S. C.
Tong
, Y. M.
Li
, and H.-G.
Zhang
, “Adaptive neural network decentralized backstepping output-feedback control for nonlinear large-scale systems with time delays
,” IEEE Trans. Neural Netw.
22
, 1073
–1086
(2011
).35
E. N.
Lorenz
, “Deterministic nonperiodic flow
,” J. Atmos. Sci.
20
, 130
–141
(1963
). 36
A. V.
Tutueva
, L.
Moysis
, V. G.
Rybin
, E. E.
Kopets
, C.
Volos
, and D. N.
Butusov
, “Fast synchronization of symmetric Hénon maps using adaptive symmetry control
,” Chaos, Solitons Fractals
155
, 111732
(2022
). 37
Y.
Han
, J.
Ding
, L.
Du
, and Y.
Lei
, “Control and anti-control of chaos based on the moving largest Lyapunov exponent using reinforcement learning
,” Physica D
428
, 133068
(2021
). 38
A.
Soleymani
, M. J.
Nordin
, and E.
Sundararajan
, “A chaotic cryptosystem for images based on Hénon and Arnold cat map
,” Sci. World J.
2014
, 536930
.39
J.
Khan
, J.
Ahmad
, and S. O.
Hwang
, “An efficient image encryption scheme based on: Hénon map, skew tent map and S-Box,” in 2015 6th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO) (IEEE, 2015), pp. 1–6.40
B. F.
Vajargah
and R.
Asghari
, “A pseudo random number generator based on chaotic Hénon map (CHCG)
,” Int. J. Mechatron. Electr. Comput. Technol.
5
, 2120
–2129
(2015
).41
T.
Belkhouja
, X.
Du
, A.
Mohamed
, A. K.
Al-Ali
, and M.
Guizani
, “Symmetric encryption relying on chaotic Hénon system for secure hardware-friendly wireless communication of implantable medical systems
,” J. Sens. Actuator Netw.
7
, 21
(2018
). 42
E.
Braverman
and A.
Rodkina
, “On target-oriented control of Hénon and Lozi maps
,” J. Differ. Equ. Appl.
29
, 1
–24
(2022
).43
P.
García
, “A machine learning based control of chaotic systems
,” Chaos, Solitons Fractals
155
, 111630
(2022
).44
D.
Leite
, P.
Coutinho
, I.
Bessa
, M.
Camargos
, L. A. Q. C.
Junior
, and R.
Palhares
, “Incremental learning and state-space evolving fuzzy control of nonlinear time-varying systems with unknown model,” in Joint Proceedings of the 19th World Congress of the International Fuzzy Systems Association (IFSA), the 12th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT), and the 11th International Summer School on Aggregation Operators (AGOP) (Atlantis Press, 2021), pp. 80–87.45
W. A. S.
Barbosa
, A.
Griffith
, G. E.
Rowlands
, L. C. G.
Govia
, G. J.
Ribeill
, M.-H.
Nguyen
, T. A.
Ohki
, and D. J.
Gauthier
, “Symmetry-aware reservoir computing
,” Phys. Rev. E
104
, 045307
(2021
). 46
D.
Hertz
, “Sequential ridge regression
,” IEEE Trans. Aerosp. Electron. Syst.
27
, 571
–574
(1991
). 47
C. R.
Vogel
, Computational Methods for Inverse Problems
(Society for Industrial and Applied Mathematics
, 2002
).© 2024 Author(s). Published under an exclusive license by AIP Publishing.
2024
Author(s)
You do not currently have access to this content.