Extensive real-data indicate that human motion exhibits novel patterns and has a significant impact on the epidemic spreading process. The research on the influence of human motion patterns on epidemic spreading dynamics still lacks a systematic study in network science. Based on an agent-based model, this paper simulates the spread of the disease in the gathered population by combining the susceptible–infected–susceptible epidemic process with human motion patterns, described by moving speed and gathering preference. Our simulation results show that the emergence of a hysteresis loop is observed in the system when the moving speed is slow, particularly when humans prefer to gather; that is, the epidemic prevalence of the systems depends on the fraction of initial seeds. Regardless of the gathering preference, the hysteresis loop disappears when the population moves fast. In addition, our study demonstrates that there is an optimal moving speed for the gathered population, at which the epidemic prevalence reaches its maximum value.

1.
S.
Funk
,
M.
Salathé
, and
V. A. A.
Jansen
, “
Modelling the influence of human behaviour on the spread of infectious diseases: A review
,”
J. R. Soc. Interface
7
,
1247
1256
(
2010
).
2.
W. O.
Kermack
and
A. G.
McKendrick
, “
A contribution to the mathematical theory of epidemics
,”
Proc. R. Soc. Lond. A
115
,
700
721
(
1997
).
3.
O.
Diekmann
,
J. A. P.
Heesterbeek
, and
J. A. J.
Metz
, “
On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations
,”
J. Math. Biol.
28
,
365
382
(
1990
).
4.
N. M.
Ferguson
,
D. A. T.
Cummings
,
C.
Fraser
,
J. C.
Cajka
,
P. C.
Cooley
, and
D. S.
Burke
, “
Strategies for mitigating an influenza pandemic
,”
Nature
442
,
448
452
(
2006
).
5.
C. I.
Siettos
and
L.
Russo
, “
Mathematical modeling of infectious disease dynamics
,”
Virulence
4
,
295
306
(
2013
).
6.
D. J.
Watts
and
S. H.
Strogatz
, “
Collective dynamics of “small-world” networks
,”
Nature
393
,
440
442
(
1998
).
7.
A.-L.
Barabási
and
E.
Bonabeau
, “
Scale-free networks
,”
Sci. Am.
288
,
60
69
(
2003
).
8.
D.-U.
Hwang
,
S.
Boccaletti
,
Y.
Moreno
, and
R.
Lopez-Ruiz
, “
Thresholds for epidemic outbreaks in finite scale-free networks
,”
Math. Biosci. Eng.
2
,
317
327
(
2005
).
9.
R.
Pastor-Satorras
and
A.
Vespignani
, “
Epidemic spreading in scale-free networks
,”
Phys. Rev. Lett.
86
,
3200
3203
(
2001
).
10.
M.
Small
and
C. K.
Tse
, “
Small world and scale free model of transmission of sars
,”
Int. J. Bifurc. Chaos
15
,
1745
1755
(
2005
).
11.
M.
Salathé
,
M.
Kazandjieva
,
J. W.
Lee
,
P.
Levis
,
M. W.
Feldman
, and
J. H.
Jones
, “
A high-resolution human contact network for infectious disease transmission
,”
Proc. Natl. Acad. Sci. U.S.A.
107
,
22020
22025
(
2010
).
12.
A.
Aleta
,
D.
Martín-Corral
,
M. A.
Bakker
,
A.
Pastore y Piontti
,
M.
Ajelli
,
M.
Litvinova
,
M.
Chinazzi
,
N. E.
Dean
,
M. E.
Halloran
,
I. M.
Longini
,
A.
Pentland
,
A.
Vespignani
,
Y.
Moreno
, and
E.
Moro
, “
Quantifying the importance and location of SARS-CoV-2 transmission events in large metropolitan areas
,”
Proc. Natl. Acad. Sci. U.S.A.
119
,
e2112182119
(
2022
).
13.
N.
Hoertel
,
M.
Blachier
,
C.
Blanco
,
M.
Olfson
,
M.
Massetti
,
M. S.
Rico
,
F.
Limosin
, and
H.
Leleu
, “
A stochastic agent-based model of the SARS-CoV-2 epidemic in France
,”
Nat. Med.
26
,
1417
1421
(
2020
).
14.
F. A.
Salem
and
U. F.
Moreno
, “
A multi-agent-based simulation model for the spreading of diseases through social interactions during pandemics
,”
J. Control Autom. Electr. Syst.
33
,
1161
1176
(
2022
).
15.
T.
Vicsek
,
A.
Czirók
,
E.
Ben-Jacob
,
I.
Cohen
, and
O.
Shochet
, “
Novel type of phase transition in a system of self-driven particles
,”
Phys. Rev. Lett.
75
,
1226
1229
(
1995
).
16.
T.
Vicsek
and
A.
Zafeiris
, “
Collective motion
,”
Phys. Rep.
517
,
71
140
(
2012
).
17.
F.
Ginelli
, “
The physics of the Vicsek model
,”
Eur. Phys. J.: Spec. Top.
225
,
2099
2117
(
2016
).
18.
D. J. G.
Pearce
,
A. M.
Miller
,
G.
Rowlands
, and
M. S.
Turner
, “
Role of projection in the control of bird flocks
,”
Proc. Natl. Acad. Sci. U.S.A.
111
,
10422
10426
(
2014
).
19.
J. P.
Rodríguez
,
F.
Ghanbarnejad
, and
V. M.
Eguíluz
, “
Particle velocity controls phase transitions in contagion dynamics
,”
Sci. Rep.
9
,
6463
(
2019
).
20.
K. P.
O’Keeffe
,
H.
Hong
, and
S. H.
Strogatz
, “
Oscillators that sync and swarm
,”
Nat. Commun.
8
,
1504
(
2017
).
21.
D.
Levis
,
A.
Diaz-Guilera
,
I.
Pagonabarraga
, and
M.
Starnini
, “
Flocking-enhanced social contagion
,”
Phys. Rev. Res.
2
,
032056
(
2020
).
22.
P. C.
Ventura
,
A.
Aleta
,
F. A.
Rodrigues
, and
Y.
Moreno
, “
Epidemic spreading in populations of mobile agents with adaptive behavioral response
,”
Chaos, Solitons Fractals
156
,
111849
(
2022
).
23.
R. M.
Anderson
and
R. M.
May
,
Infectious Diseases of Humans: Dynamics and Control
, repr. ed. (
Oxford University Press
,
Oxford
,
2010
).
24.
H. W.
Hethcote
, “
The mathematics of infectious diseases
,”
SIAM Rev.
42
,
599
653
(
2000
).
25.
J.
Rodriguez
,
M.
Paoluzzi
,
D.
Levis
, and
M.
Starnini
, “
Epidemic processes on self-propelled particles: Continuum and agent-based modeling
,”
Phys. Rev. Res.
4
,
043160
(
2022
).
26.
M.
Starnini
,
A.
Baronchelli
, and
R.
Pastor-Satorras
, “
Modeling human dynamics of face-to-face interaction networks
,”
Phys. Rev. Lett.
110
,
168701
(
2013
).
27.
A. L.
Hill
,
D. G.
Rand
,
M. A.
Nowak
, and
N. A.
Christakis
, “
Infectious disease modeling of social contagion in networks
,”
PLoS Comput. Biol.
6
,
e1000968
(
2010
).
28.
M. U. G.
Kraemer
,
C.-H.
Yang
,
B.
Gutierrez
,
C.-H.
Wu
,
B.
Klein
,
D. M.
Pigott
,
Open COVID-19 Data Working Group
,
L.
du Plessis
,
N. R.
Faria
,
R.
Li
,
W. P.
Hanage
,
J. S.
Brownstein
,
M.
Layan
,
A.
Vespignani
,
H.
Tian
,
C.
Dye
,
O. G.
Pybus
, and
S. V.
Scarpino
, “
The effect of human mobility and control measures on the COVID-19 epidemic in China
,”
Science
368
,
493
497
(
2020
).
29.
P.
Forgács
,
A.
Libál
,
C.
Reichhardt
,
N.
Hengartner
, and
C. J. O.
Reichhardt
, “
Using active matter to introduce spatial heterogeneity to the susceptible infected recovered model of epidemic spreading
,”
Sci. Rep.
12
,
11229
(
2022
).
30.
K.
Zhao
,
J.
Stehlé
,
G.
Bianconi
, and
A.
Barrat
, “
Social network dynamics of face-to-face interactions
,”
Phys. Rev. E
83
,
056109
(
2011
).
31.
E.
Frias-Martinez
,
G.
Williamson
, and
V.
Frias-Martinez
, “An agent-based model of epidemic spread using human mobility and social network information,” in 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third International Conference on Social Computing (IEEE, 2011), pp. 57–64.
32.
M. S. Y.
Lau
,
B.
Grenfell
,
M.
Thomas
,
M.
Bryan
,
K.
Nelson
, and
B.
Lopman
, “
Characterizing superspreading events and age-specific infectiousness of SARS-CoV-2 transmission in Georgia, USA
,”
Proc. Natl. Acad. Sci. U.S.A.
117
,
22430
22435
(
2020
).
33.
C.
Song
,
Z.
Qu
,
N.
Blumm
, and
A.-L.
Barabási
, “
Limits of predictability in human mobility
,”
Science
327
,
1018
1021
(
2010
).
34.
C.
Song
,
T.
Koren
,
P.
Wang
, and
A.-L.
Barabási
, “
Modelling the scaling properties of human mobility
,”
Nat. Phys.
6
,
818
823
(
2010
).
35.
X.
Bao
,
P.
Ji
,
W.
Lin
,
M.
Perc
, and
J.
Kurths
, “
The impact of COVID-19 on the worldwide air transportation network
,”
R. Soc. Open Sci.
8
,
210682
(
2021
).
36.
M.
Chinazzi
,
J. T.
Davis
,
M.
Ajelli
,
C.
Gioannini
,
M.
Litvinova
,
S.
Merler
,
A.
Pastore y Piontti
,
K.
Mu
,
L.
Rossi
,
K.
Sun
,
C.
Viboud
,
X.
Xiong
,
H.
Yu
,
M. E.
Halloran
,
I. M.
Longini
, and
A.
Vespignani
, “
The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak
,”
Science
368
,
395
400
(
2020
).
37.
S.
Hsiang
,
D.
Allen
,
S.
Annan-Phan
,
K.
Bell
,
I.
Bolliger
,
T.
Chong
,
H.
Druckenmiller
,
L. Y.
Huang
,
A.
Hultgren
,
E.
Krasovich
,
P.
Lau
,
J.
Lee
,
E.
Rolf
,
J.
Tseng
, and
T.
Wu
, “
The effect of large-scale anti-contagion policies on the COVID-19 pandemic
,”
Nature
584
,
262
267
(
2020
).
38.
S.
Lai
,
N. W.
Ruktanonchai
,
L.
Zhou
,
O.
Prosper
,
W.
Luo
,
J. R.
Floyd
,
A.
Wesolowski
,
M.
Santillana
,
C.
Zhang
,
X.
Du
,
H.
Yu
, and
A. J.
Tatem
, “
Effect of non-pharmaceutical interventions to contain COVID-19 in China
,”
Nature
585
,
410
413
(
2020
).
39.
A. J.
Kucharski
,
T. W.
Russell
,
C.
Diamond
,
Y.
Liu
,
J.
Edmunds
,
S.
Funk
,
R. M.
Eggo
,
F.
Sun
,
M.
Jit
,
J. D.
Munday
,
N.
Davies
,
A.
Gimma
,
K.
van Zandvoort
,
H.
Gibbs
,
J.
Hellewell
,
C. I.
Jarvis
,
S.
Clifford
,
B. J.
Quilty
,
N. I.
Bosse
,
S.
Abbott
,
P.
Klepac
, and
S.
Flasche
, “
Early dynamics of transmission and control of COVID-19: A mathematical modelling study
,”
Lancet Infect. Dis.
20
,
553
558
(
2020
).
40.
D.
Helbing
, “Agent-based modeling,” in Social Self-Organization: Agent-Based Simulations and Experiments to Study Emergent Social Behavior, Understanding Complex Systems, edited by D. Helbing (Springer, Berlin, 2012), pp. 25–70.
41.
T. J.
Gordon
, “
A simple agent model of an epidemic
,”
Technol. Forecast. Soc. Change
70
,
397
417
(
2003
).
42.
P.
Patlolla
,
V.
Gunupudi
,
A. R.
Mikler
, and
R. T.
Jacob
, “Agent-based simulation tools in computational epidemiology,” in Innovative Internet Community Systems, Lecture Notes in Computer Science, edited by T. Böhme, V. M. Larios Rosillo, H. Unger, and H. Unger (Springer, Berlin, 2006) pp. 212–223.
43.
M.
Oliveira
,
F.
Karimi
,
M.
Zens
,
J.
Schaible
,
M.
Genois
, and
M.
Strohmaier
, “
Group mixing drives inequality in face-to-face gatherings
,”
Commun. Phys.
5
,
127
(
2022
).
44.
Q.
Wu
,
X.
Fu
,
M.
Small
, and
X.-J.
Xu
, “
The impact of awareness on epidemic spreading in networks
,”
J. Theor. Biol.
22
,
013101
(
2012
).
You do not currently have access to this content.