Collective ordering behaviors are typical macroscopic manifestations embedded in complex systems and can be ubiquitously observed across various physical backgrounds. Elements in complex systems may self-organize via mutual or external couplings to achieve diverse spatiotemporal coordinations. The order parameter, as a powerful quantity in describing the transition to collective states, may emerge spontaneously from large numbers of degrees of freedom through competitions. In this minireview, we extensively discussed the collective dynamics of complex systems from the viewpoint of order-parameter dynamics. A synergetic theory is adopted as the foundation of order-parameter dynamics, and it focuses on the self-organization and collective behaviors of complex systems. At the onset of macroscopic transitions, slow modes are distinguished from fast modes and act as order parameters, whose evolution can be established in terms of the slaving principle. We explore order-parameter dynamics in both model-based and data-based scenarios. For situations where microscopic dynamics modeling is available, as prototype examples, synchronization of coupled phase oscillators, chimera states, and neuron network dynamics are analytically studied, and the order-parameter dynamics is constructed in terms of reduction procedures such as the Ott–Antonsen ansatz, the Lorentz ansatz, and so on. For complicated systems highly challenging to be well modeled, we proposed the eigen-microstate approach (EMP) to reconstruct the macroscopic order-parameter dynamics, where the spatiotemporal evolution brought by big data can be well decomposed into eigenmodes, and the macroscopic collective behavior can be traced by Bose–Einstein condensation-like transitions and the emergence of dominant eigenmodes. The EMP is successfully applied to some typical examples, such as phase transitions in the Ising model, climate dynamics in earth systems, fluctuation patterns in stock markets, and collective motion in living systems.

1.
Y.
Kuramoto
,
Chemical Oscillations, Waves, and Turbulence
(
Springer-Verlag
,
1984
).
2.
Z.
Zheng
,
An Introduction to Emergence Dynamics in Complex Systems
(
Springer Singapore
,
Singapore
,
2021
).
3.
M. E.
Fisher
,
Rev. Mod. Phys.
70
,
653
(
1998
).
4.
H.
Haken
,
Advanced Synergetics: Instability Hierarchies of Self-Organizing Systems and Devices
(
Springer
,
Berlin
,
1983
).
5.
A. T.
Winfree
,
J. Theor. Biol.
16
,
15
(
1967
).
6.
E.
Ott
and
T. M.
Antonsen
,
Chaos
18
,
037113
(
2008
).
7.
E.
Ott
and
T. M.
Antonsen
,
Chaos
19
,
023117
(
2009
).
8.
F.
Parastesh
,
S.
Jafari
,
H.
Azarnoush
,
Z.
Shahriari
,
Z.
Wang
,
S.
Boccaletti
, and
M.
Perc
,
Phys. Rep.
898
,
1
(
2021
).
9.
E.
Montbrió
,
D.
Pazó
, and
A.
Roxin
,
Phys. Rev. X
5
,
021028
(
2015
).
10.
C.
Bechinger
,
R.
Di Leonardo
,
H.
Löwen
,
C.
Reichhardt
,
G.
Volpe
, and
G.
Volpe
,
Rev. Mod. Phys.
88
,
045006
(
2016
).
11.
K. P.
O’Keeffe
,
H.
Hong
, and
S. H.
Strogatz
,
Nat. Commun.
8
,
1504
(
2017
).
12.
M. I.
Rabinovich
,
P.
Varona
,
A. I.
Selverston
, and
H. D. I.
Abarbanel
,
Rev. Mod. Phys.
78
,
1213
(
2006
).
13.
V. A.
Huynh-Thu
and
G.
Sanguinetti
,
Gene Regulatory Network Inference: An Introductory Survey
(
Springer New York
,
New York, NY
,
2019
).
14.
D.
Sornette
,
Rep. Prog. Phys.
77
,
062001
(
2014
).
15.
S.
Boccaletti
,
V.
Latora
,
Y.
Moreno
,
M.
Chavez
, and
D.-U.
Hwang
,
Phys. Rep.
424
,
175
(
2006
).
16.
J.
Ren
,
W.-X.
Wang
,
B.
Li
, and
Y.-C.
Lai
,
Phys. Rev. Lett.
104
,
058701
(
2010
).
17.
P.
Yang
,
Q.
Wang
, and
Z.
Zheng
,
Phys. Rev. E
86
,
026203
(
2012
).
18.
Z.
Zhang
,
Z.
Li
,
G.
Hu
, and
Z.
Zheng
,
Europhys. Lett.
105
,
18003
(
2014
).
19.
H.
Wang
,
C.
Ma
,
H.-S.
Chen
,
Y.-C.
Lai
, and
H.
Zhang
,
Nat. Commun.
13
,
3043
(
2022
).
20.
Z.
Yan
,
L.-X.
Gui
,
K.
Xu
, and
Y.
Lan
,
New J. Phys.
25
,
083011
(
2023
).
21.
Y.
Sun
,
G.
Hu
,
Y.
Zhang
,
B.
Lu
,
Z.
Lu
,
J.
Fan
,
X.
Li
,
Q.
Deng
, and
X.
Chen
,
Commun. Theor. Phys.
73
,
065603
(
2021
).
22.
M. C.
Cross
and
P.
Hohenberg
,
Rev. Mod. Phys.
65
,
851
(
1993
).
23.
I. S.
Aranson
and
L.
Kramer
,
Rev. Mod. Phys.
74
,
99
(
2001
).
24.
M.
Cross
and
H.
Greenside
,
Pattern Formation and Dynamics in Nonequilibrium Systems
(
Cambridge University Press
,
2009
).
25.
V.
García-Morales
and
K.
Krischer
,
Contemp. Phys.
53
,
79
(
2012
).
26.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
,
Synchronization: A Universal Concept in Nonlinear Sciences
(
Cambridge University Press
,
Cambridge
,
2001
).
27.
Z.
Zheng
,
G.
Hu
, and
B.
Hu
,
Phys. Rev. Lett.
81
,
5318
(
1998
).
28.
Z.
Zheng
,
B.
Hu
, and
G.
Hu
,
Phys. Rev. E
62
,
402
(
2000
).
29.
B.
Hu
and
Z.
Zheng
,
Int. J. Bifurcation Chaos
10
,
2399
(
2000
).
30.
J.
Gao
,
C.
Xu
,
Y.
Sun
, and
Z.
Zheng
,
Sci. Rep.
6
,
30184
(
2015
).
31.
H.
Chen
,
Y.
Sun
,
J.
Gao
,
C.
Xu
, and
Z.
Zheng
,
Front. Phys.
12
,
120504
(
2017
).
32.
S. H.
Strogatz
and
R.
Mirollo
,
J. Stat. Phys.
63
,
613
(
1991
).
33.
R.
Mirollo
and
S. H.
Strogatz
,
Physica D
205
,
249
(
2005
).
34.
S.
Watanabe
and
S. H.
Strogatz
,
Phys. Rev. Lett.
70
,
2391
(
1993
).
35.
S.
Watanabe
and
S. H.
Strogatz
,
Physica D
74
,
197
(
1994
).
36.
S. A.
Marvel
,
R.
Mirollo
, and
S. H.
Strogatz
,
Chaos
19
,
043104
(
2009
).
37.
S. A.
Marvel
and
S. H.
Strogatz
,
Chaos
19
,
013132
(
2009
).
38.
G. A.
Gottwald
,
Chaos
25
,
053111
(
2015
).
39.
E. J.
Hancock
and
G. A.
Gottwald
,
Phys. Rev. E
98
,
012307
(
2018
).
40.
J.
Fialkowski
,
S.
Yanchuk
,
I. M.
Sokolov
,
E.
Schöll
,
G. A.
Gottwald
, and
R.
Berner
,
Phys. Rev. Lett.
130
,
067402
(
2023
).
41.
R.
Cestnik
and
A.
Pikovsky
,
Phys. Rev. Lett.
128
,
054101
(
2022
).
42.
J. A.
Acebrón
,
L. L.
Bonilla
,
C. J. P.
Vicente
,
F.
Ritort
, and
R.
Spigler
,
Rev. Mod. Phys.
77
,
137
(
2005
).
43.
F. A.
Rodrigues
,
T. K. D.
M. Peron
,
P.
Ji
, and
J.
Kurths
,
Phys. Rep.
610
,
1
(
2016
).
44.
H.
Hong
and
S. H.
Strogatz
,
Phys. Rev. Lett.
106
,
054102
(
2011
).
45.
J.
Park
and
B.
Kahng
,
Physica D
399
,
186
(
2019
).
46.
C.
Xu
,
S.
Boccaletti
,
Z.
Zheng
, and
S.
Guan
,
New J. Phys.
21
,
113018
(
2019
).
47.
T.
Qiu
,
S.
Boccaletti
,
Z.
Liu
, and
S.
Guan
,
Phys. Rev. E
100
,
052310
(
2019
).
48.
E.
Teichmann
and
M.
Rosenblum
,
Chaos
29
,
093124
(
2019
).
49.
S. N.
Chowdhury
,
D.
Ghosh
, and
C.
Hens
,
Phys. Rev. E
101
,
022310
(
2020
).
50.
T.
Peron
,
Phys. Rev. E
103
,
042210
(
2021
).
51.
A.
Sharma
,
Chaos Soliton. Fract.
145
,
110815
(
2021
).
52.
K. L.
Kreienkamp
and
S. H. L.
Klapp
,
New J. Phys.
24
,
123009
(
2022
).
53.
M.
Manoranjani
,
D.
Senthilkumar
, and
V.
Chandrasekar
,
Chaos Soliton. Fract.
167
,
113018
(
2023
).
54.
T.
Tanaka
and
T.
Aoyagi
,
Phys. Rev. Lett.
106
,
224101
(
2011
).
55.
P. S.
Skardal
,
E.
Ott
, and
J. G.
Restrepo
,
Phys. Rev. E
84
,
036208
(
2011
).
56.
M.
Komarov
and
A.
Pikovsky
,
Phys. Rev. E
92
,
020901
(
2015
).
57.
C.
Xu
,
Y.
Sun
,
J.
Gao
,
T.
Qiu
,
Z.
Zheng
, and
S.
Guan
,
Sci. Rep.
6
,
21926
(
2016
).
58.
P. S.
Skardal
and
A.
Arenas
,
Phys. Rev. Lett.
122
,
248301
(
2019
).
59.
X.
Wang
,
Z.
Zheng
, and
C.
Xu
,
Phys. Rev. E
104
,
054208
(
2021
).
60.
X.
Wang
,
C.
Xu
, and
Z.
Zheng
,
Nonlinear Dyn.
103
,
2721
(
2021
).
61.
H.
Wang
and
X.
Li
,
Phys. Rev. E
83
,
066214
(
2011
).
62.
J.
Gómez-Gardeñes
,
S.
Gómez
,
A.
Arenas
, and
Y.
Moreno
,
Phys. Rev. Lett.
106
,
128701
(
2011
).
63.
X.
Zhang
,
X.
Hu
,
J.
Kurths
, and
Z.
Liu
,
Phys. Rev. E
88
,
010802
(
2013
).
64.
R. S.
Pinto
and
A.
Saa
,
Phys. Rev. E
91
,
022818
(
2014
).
65.
S.
Boccaletti
,
J.
Almendral
,
S.
Guan
,
I.
Leyva
,
Z.
Liu
,
I.
Sendia-Nadal
,
Z.
Wang
, and
Y.
Zou
,
Phys. Rep.
660
,
1
(
2016
).
66.
R. M.
D’Souza
,
J.
G’omez-Gardenes
,
J.
Nagler
, and
A.
Arenas
,
Adv. Phys.
68
,
123
(
2019
).
67.
W.
Zou
and
J.
Wang
,
Phys. Rev. E
102
,
012219
(
2020
).
68.
Y.
Wu
,
Z.
Zheng
,
L.
Tang
, and
C.
Xu
,
Chaos Soliton. Fract.
164
,
112680
(
2022
).
69.
F.
Ritort
,
Phys. Rev. Lett.
80
,
6
(
1998
).
70.
C.
Zheng
,
R.
Toenjes
, and
A.
Pikovsky
,
Phys. Rev. E
104
,
014216
(
2021
).
71.
J.
Zhu
,
Phys. Lett. A
377
,
2939
(
2013
).
72.
T.
Tanaka
,
New J. Phys.
16
,
023016
(
2014
).
73.
S.
Chandra
,
M.
Girvan
, and
E.
Ott
,
Phys. Rev. X
9
,
011002
(
2019
).
74.
S.
Chandra
,
M.
Girvan
, and
E.
Ott
,
Chaos
29
,
053107
(
2019
).
75.
S.
Chandra
and
E.
Ott
,
Chaos
29
,
033124
(
2019
).
76.
M.
Lipton
,
R.
Mirollo
, and
S. H.
Strogatz
,
Chaos
31
,
093113
(
2019
).
77.
X.
Dai
,
X.
Li
,
H.
Guo
,
D.
Jia
,
M.
Perc
,
P.
Manshour
,
Z.
Wang
, and
S.
Boccaletti
,
Phys. Rev. Lett.
125
,
194101
(
2020
).
78.
W.
Zou
,
S.
He
,
D. V.
Senthilkumar
, and
J.
Kurths
,
Phys. Rev. Lett.
130
,
107202
(
2023
).
79.
K.
Kovalenko
,
X.
Dai
,
K.
Alfaro-Bittner
,
A. M.
Raigorodskii
,
M.
Perc
, and
S.
Boccaletti
,
Phys. Rev. Lett.
127
,
258301
(
2021
).
80.
B.
Ermentrout
,
J. Math. Biol.
29
,
571
(
1991
).
81.
D.
Witthaut
,
F.
Hellmann
,
J.
Kurths
,
S.
Kettemann
,
H.
Meyer-Ortmanns
, and
M.
Timme
,
Rev. Mod. Phys.
94
,
015005
(
2022
).
82.
G.
Filatrella
,
A. H.
Nielsen
, and
N. F.
Pedersen
,
Eur. Phys. J. B
61
,
485
(
2008
).
83.
P. J.
Menck
,
J.
Heitzig
,
N.
Marwan
, and
J.
Kurths
,
Nat. Phys.
9
,
89
(
2013
).
84.
P.
Ji
,
T. K. D.
Peron
,
F. A.
Rodrigues
, and
J.
Kurths
,
Phys. Rev. E
90
,
062810
(
2014
).
85.
P.
Ji
,
W.
Lu
, and
J.
Kurths
,
Europhys. Lett.
122
,
40003
(
2018
).
86.
P. J.
Menck
,
J.
Heitzig
,
J.
Kurths
, and
H.
Joachim Schellnhuber
,
Nat. Commun.
5
,
1
(
2014
).
87.
M.
Brede
,
Phys. Lett. A
372
,
2618
(
2008
).
88.
P. S.
Skardal
,
D.
Taylor
, and
J.
Sun
,
Phys. Rev. Lett.
113
,
144101
(
2014
).
89.
X.
Li
,
W.
Wei
, and
Z.
Zheng
,
Chaos
33
,
063149
(
2023
).
90.
H.-A.
Tanaka
,
A. J.
Lichtenberg
, and
S.
Oishi
,
Phys. Rev. Lett.
78
,
2104
(
1997
).
91.
J.
Gao
and
K.
Efstathiou
,
Phys. Rev. E
98
,
042201
(
2018
).
92.
J.
Gao
and
K.
Efstathiou
,
Chaos
31
,
093137
(
2021
).
93.
G.
Csaba
and
W.
Porod
,
Appl. Phys. Rev.
7
,
011302
(
2020
).
94.
Y.
Zhang
,
Y.
Deng
,
Y.
Lin
,
Y.
Jiang
,
Y.
Dong
,
X.
Chen
,
G.
Wang
,
D.
Shang
,
Q.
Wang
,
H.
Yu
et al.,
Micromachines
13
,
1016
(
2022
).
95.
T.
Wang
and
J. S.
Roychowdhury
, in
International Conference on Unconventional Computation and Natural Computation
(Springer Nature, 2019), pp. 232–256; see arXiv:1903.07163.
96.
T.
Wang
,
L.
Wu
,
P.
Nobel
, and
J. S.
Roychowdhury
,
Nat. Comput.
20
,
287
(
2021
).
97.
A.
Houshang
,
M.
Zahedinejad
,
S.
Muralidhar
,
J.
Checiński
,
R.
Khymyn
,
M.
Rajabali
,
H.
Fulara
,
A. A.
Awad
,
M.
Dvornik
, and
J.
Åkerman
,
Phys. Rev. Appl.
17
,
014003
(
2022
).
98.
A.
Grimaldi
,
L.
Mazza
,
E.
Raimondo
,
P.
Tullo
,
D.
Rodrigues
,
K. Y.
Camsari
,
V.
Crupi
,
M.
Carpentieri
,
V.
Puliafito
, and
G.
Finocchio
,
Phys. Rev. Appl.
20
,
024005
(
2023
).
99.
A.
Kumar
,
H.
Fulara
,
R.
Khymyn
,
A.
Litvinenko
,
M.
Zahedinejad
,
M.
Rajabali
,
X.
Zhao
,
N.
Behera
,
A.
Houshang
,
A. A.
Awad
et al.,
Nano Lett.
23
,
6720
(
2023
).
100.
J.
Chou
,
S.
Bramhavar
,
S.
Ghosh
, and
W.
Herzog
,
Sci. Rep.
9
,
14786
(
2019
).
101.
Y.
Kuramoto
and
D.
Battogtokh
,
Nonlinear Phenom. Complex Syst.
5
,
380
(
2002
), http://www.j-npcs.org/abstracts/vol2002/v5no4/v5no4p380.html.
102.
D. M.
Abrams
and
S. H.
Strogatz
,
Phys. Rev. Lett.
93
,
174102
(
2004
).
103.
D. M.
Abrams
and
S. H.
Strogatz
,
Int. J. Bifurcation Chaos
16
,
21
(
2006
).
104.
O. E.
Omel’chenko
,
M.
Wolfrum
, and
Y. L.
Maistrenko
,
Phys. Rev. E
81
,
065201
(
2010
).
105.
M.
Wolfrum
and
O. E.
Omel’chenko
,
Phys. Rev. E
84
,
015201
(
2011
).
106.
D. M.
Abrams
,
R.
Mirollo
,
S. H.
Strogatz
, and
D. A.
Wiley
,
Phys. Rev. Lett.
101
,
084103
(
2008
).
107.
C. R.
Laing
,
Physica D
238
,
1569
(
2009
).
108.
O. E.
Omel’chenko
,
Nonlinearity
26
,
2469
(
2013
).
109.
I.
Omelchenko
,
Y. L.
Maistrenko
,
P.
Hövel
, and
E.
Schöll
,
Phys. Rev. Lett.
106
,
234102
(
2011
).
110.
I.
Omelchenko
,
B.
Riemenschneider
,
P.
Hövel
,
Y. L.
Maistrenko
, and
E.
Schöll
,
Phys. Rev. E
85
,
026212
(
2012
).
111.
B. K.
Bera
,
D.
Ghosh
, and
M.
Lakshmanan
,
Phys. Rev. E
93
,
012205
(
2016
).
112.
I. A.
Shepelev
,
T. E.
Vadivasova
,
G. I.
Strelkova
, and
V. S.
Anishchenko
,
Phys. Lett. A
381
,
1398
(
2017
).
113.
E. A.
Martens
,
C. R.
Laing
, and
S. H.
Strogatz
,
Phys. Rev. Lett.
104
,
044101
(
2010
).
114.
S. R.
Ujjwal
and
R.
Ramaswamy
,
Phys. Rev. E
88
,
032902
(
2013
).
115.
A. S.
Zakharova
,
M. L.
Kapeller
, and
E.
Schöll
,
Phys. Rev. Lett.
112
,
154101
(
2014
).
116.
U. K.
Verma
and
G.
Ambika
,
Chaos
30
,
043104
(
2020
).
117.
G. G.
Mascetti
,
Nature Sci. Sleep
8
,
221
(
2016
).
118.
M.
Tamaki
,
J. W.
Bang
,
T.
Watanabe
, and
Y.
Sasaki
,
Curr. Biol.
26
,
1190
(
2016
).
119.
M.
Gerster
,
R.
Berner
,
J.
Sawicki
,
A. S.
Zakharova
,
A.
Škoch
,
J.
Hlinka
,
K.
Lehnertz
, and
E.
Schöll
,
Chaos
30
,
123130
(
2020
).
120.
E. M.
Izhikevich
,
Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting
(
MIT Press
,
Cambridge, MA
,
2006
).
121.
G.
Hahn
,
A.
Ponce-Alvarez
,
G.
Deco
,
A.
Aertsen
, and
A.
Kumar
,
Nat. Rev. Neurosci.
20
,
117
(
2018
).
122.
B. B.
Averbeck
,
P. E.
Latham
, and
A.
Pouget
,
Nat. Rev. Neurosci.
7
,
358
(
2006
).
123.
R.
Brette
,
M.
Rudolph-Lilith
,
N. T.
Carnevale
,
M. L.
Hines
,
D.
Beeman
,
J. M.
Bower
,
M.
Diesmann
,
A.
Morrison
,
P. H.
Goodman
,
F. C.
Harris
et al.,
J. Comp. Neuron.
23
,
349
(
2007
).
124.
M.
Lundqvist
,
J.
Rose
,
P. A.
Herman
,
S. L.
Brincat
,
T. J.
Buschman
, and
E. K.
Miller
,
Neuron
90
,
152
(
2016
).
125.
W.
Gerstner
and
W. M.
Kistler
,
Spiking Neuron Models: Single Neurons, Populations, Plasticity
(
Cambridge University Press
,
Cambridge
,
2002
).
126.
G. B.
Ermentrout
and
D. H.
Terman
,
Mathematical Foundations of Neuroscience
(
Springer
,
New York
,
2010
), Vol. 64.
127.
I.
Ratas
and
K.
Pyragas
,
Phys. Rev. E
94
,
032215
(
2016
).
128.
I.
Ratas
and
K.
Pyragas
,
Phys. Rev. E
100
,
052211
(
2019
).
129.
D.
Pazó
and
E.
Montbrió
,
Phys. Rev. Lett.
116
,
238101
(
2016
).
130.
F.
Devalle
,
E.
Montbrió
, and
D.
Pazó
,
Phys. Rev. E
98
,
042214
(
2018
).
131.
K.
Pyragas
,
A. P.
Fedaravivcius
, and
T.
Pyragiene
,
Phys. Rev. E
104
,
014203
(
2021
).
132.
H.
Bi
,
M.
di Volo
, and
A.
Torcini
,
Front. Syst. Neurosci.
15
,
752261
(
2021
).
133.
E.
Montbri’o
and
D.
Paz’o
,
Phys. Rev. Lett.
125
,
248101
(
2020
).
134.
D. S.
Goldobin
,
M.
di Volo
, and
A.
Torcini
,
Phys. Rev. Lett.
127
,
038301
(
2021
).
135.
G.
Hu
,
T.
Liu
,
M.
Liu
,
W.
Chen
, and
X.
Chen
,
Sci. China Phys. Mech. Astron.
62
,
990511
(
2019
).
136.
V.
Lucarini
,
R.
Blender
,
C.
Herbert
,
F.
Ragone
,
S.
Pascale
, and
J.
Wouters
,
Rev. Geophys.
52
,
809
(
2014
).
137.
J.
Fan
,
J.
Meng
,
J.
Ludescher
,
X.
Chen
,
Y.
Ashkenazy
,
J.
Kurths
,
S.
Havlin
, and
H. J.
Schellnhuber
,
Phys. Rep.
896
,
1
(
2021
).
138.
E.
Kalnay
,
M.
Kanamitsu
,
R.
Kistler
,
W.
Collins
,
D.
Deaven
,
L.
Gandin
,
M.
Iredell
,
S.
Saha
,
G.
White
,
J.
Woollen
et al.,
Bull. Am. Meteorol. Soc.
77
,
437
(
1996
).
139.
X.
Li
,
T.
Xue
,
Y.
Sun
,
J.
Fan
,
H.
Li
,
M.
Liu
,
Z.
Han
,
Z.
Di
, and
X.
Chen
,
Chin. Phys. B
30
,
128703
(
2021
).
140.
A.
Cavagna
,
A.
Cimarelli
,
I.
Giardina
,
G.
Parisi
,
R.
Santagati
,
F.
Stefanini
, and
M.
Viale
,
Proc. Natl. Acad. Sci. U.S.A.
107
,
11865
(
2009
).
141.
W.
Bialek
,
A.
Cavagna
,
I.
Giardina
,
T.
Mora
,
E.
Silvestri
,
M.
Viale
, and
A. M.
Walczak
,
Proc. Natl. Acad. Sci. U.S.A.
109
,
4786
(
2011
).
142.
W.
Bialek
,
A.
Cavagna
,
I.
Giardina
,
T.
Mora
,
O.
Pohl
,
E.
Silvestri
,
M.
Viale
, and
A. M.
Walczak
,
Proc. Natl. Acad. Sci. U.S.A.
111
,
7212
(
2013
).
143.
X.
Chen
,
X.
Dong
,
A.
Be’er
,
H. L.
Swinney
, and
H. P.
Zhang
,
Phys. Rev. Lett.
108
,
148101
(
2012
).
144.
H.
Li
,
X.
qing Shi
,
M.
Huang
,
X.
Chen
,
M.
Xiao
,
C.
Liu
,
H.
Chaté
, and
H. P.
Zhang
,
Proc. Natl. Acad. Sci. U.S.A.
116
,
777
(
2018
).
145.
O.
Feinerman
,
I.
Pinkoviezky
,
A.
Gelblum
,
E.
Fonio
, and
N. S.
Gov
,
Nat. Phys.
14
,
683
(
2018
).
146.
J.
Buhl
,
D. J. T.
Sumpter
,
I. D.
Couzin
,
J. J.
Hale
,
E.
Despland
,
E. R.
Miller
, and
S. J.
Simpson
,
Science
312
,
1402
(
2006
).
147.
A.
Attanasi
,
A.
Cavagna
,
L. D.
Castello
,
I.
Giardina
,
S.
Melillo
,
L.
Parisi
,
O.
Pohl
,
B.
Rossaro
,
E.
Shen
,
E.
Silvestri
et al.,
Phys. Rev. Lett.
113
,
238102
(
2014
).
148.
F.
Ginelli
,
F.
Peruani
,
M.-H.
Pillot
,
H.
Chaté
,
G.
Theraulaz
, and
R.
Bon
,
Proc. Natl. Acad. Sci. U.S.A.
112
,
12729
(
2015
).
149.
T.
Vicsek
,
A.
Czirók
,
E.
Ben-Jacob
,
I.
Cohen
, and
O.
Shochet
,
Phys. Rev. Lett.
75
,
1226
(
1995
).
150.
G.
Grégoire
and
H.
Chaté
,
Phys. Rev. Lett.
92
,
025702
(
2004
).
151.
H.
Chaté
,
F.
Ginelli
,
G.
Grégoire
, and
F.
Raynaud
,
Phys. Rev. E
77
,
046113
(
2008
).
152.
153.
K. P.
O’Keeffe
,
J. H. M.
Evers
, and
T.
Kolokolnikov
,
Phys. Rev. E
98
,
022203
(
2018
).
154.
F.
Jiménez-Morales
,
Phys. Rev. E
101
,
062202
(
2020
).
155.
T. A.
McLennan-Smith
,
D. O.
Roberts
, and
H. S.
Sidhu
,
Phys. Rev. E
102
,
032607
(
2020
).
156.
M.
Fruchart
,
R.
Hanai
,
P. B.
Littlewood
, and
V.
Vitelli
,
Nature
592
,
363
(
2021
).
157.
H.
Hong
,
K.
Yeo
, and
H. K.
Lee
,
Phys. Rev. E
104
,
044214
(
2021
).
158.
H. K.
Lee
,
K.
Yeo
, and
H.
Hong
,
Chaos
31
,
033134
(
2021
).
159.
K.
O’Keeffe
,
S.
Ceron
, and
K.
Petersen
,
Phys. Rev. E
105
,
014211
(
2022
).
160.
G. K.
Sar
,
S. N.
Chowdhury
,
M.
Perc
, and
D.
Ghosh
,
New J. Phys.
24
,
043004
(
2022
).
161.
S.
Yoon
,
K. P.
O’Keeffe
,
J. F. F.
Mendes
, and
A. V.
Goltsev
,
Phys. Rev. Lett.
129
,
208002
(
2022
).
162.
O. A.
Igoshin
,
A.
Mogilner
,
R. D.
Welch
,
D.
Kaiser
, and
G. F.
Oster
,
Proc. Natl. Acad. Sci. U.S.A.
98
,
14913
(
2001
).
163.
D.
Tanaka
,
Phys. Rev. Lett.
99
,
134103
(
2007
).
164.
N.
Yao
, and
Z. G.
Zheng
,
Int. J. Mod. Phys. B
30
,
1630002
(
2016
).
You do not currently have access to this content.