Adaptive network is a powerful presentation to describe different real-world phenomena. However, current models often neglect higher-order interactions (beyond pairwise interactions) and diverse adaptation types (cooperative and competitive) commonly observed in systems such as the human brain and social networks. This work addresses this gap by incorporating these factors into a model that explores their impact on collective properties such as synchronization. Through simplified network representations, we investigate how the simultaneous presence of cooperative and competitive adaptations influences phase transitions. Our findings reveal a transition from first-order to second-order synchronization as the strength of higher-order interactions increases under competitive adaptation. We also demonstrate the possibility of synchronization even without pairwise interactions, provided there is strong enough higher-order coupling. When only competitive adaptations are present, the system exhibits second-order-like phase transitions and clustering. Conversely, with a combination of cooperative and competitive adaptations, the system undergoes a first-order-like phase transition, characterized by a sharp transition to the synchronized state without reverting to an incoherent state during backward transitions. The specific nature of these second-order-like transitions varies depending on the coupling strengths and mean degrees. With our model, we can control not only when the system synchronizes but also the way the system goes to synchronization.

1.
F.
Battiston
,
G.
Cencetti
,
I.
Iacopini
,
V.
Latora
,
M.
Lucas
,
A.
Patania
,
J.-G.
Young
, and
G.
Petri
, “
Networks beyond pairwise interactions: Structure and dynamics
,”
Phys. Rep.
874
,
1
92
(
2020
).
2.
F.
Battiston
,
E.
Amico
,
A.
Barrat
,
G.
Bianconi
,
G.
Ferraz de Arruda
,
B.
Franceschiello
,
I.
Iacopini
,
S.
Kéfi
,
V.
Latora
,
Y.
Moreno
et al., “
The physics of higher-order interactions in complex systems
,”
Nat. Phys.
17
,
1093
1098
(
2021
).
3.
S.
Majhi
,
M.
Perc
, and
D.
Ghosh
, “
Dynamics on higher-order networks: A review
,”
J. R. Soc. Interface
19
,
20220043
(
2022
).
4.
I.
Iacopini
,
G.
Petri
,
A.
Barrat
, and
V.
Latora
, “
Simplicial models of social contagion
,”
Nat. Commun.
10
,
1
9
(
2019
).
5.
S.
Boccaletti
,
V.
Latora
,
Y.
Moreno
,
M.
Chavez
, and
D.-U.
Hwang
, “
Complex networks: Structure and dynamics
,”
Phys. Rep.
424
,
175
308
(
2006
).
6.
J.
Sawicki
,
R.
Berner
,
S. A.
Loos
,
M.
Anvari
,
R.
Bader
,
W.
Barfuss
,
N.
Botta
,
N.
Brede
,
I.
Franović
,
D. J.
Gauthier
et al., “
Perspectives on adaptive dynamical systems
,”
Chaos
33
,
071501
(
2023
).
7.
R.
Berner
,
T.
Gross
,
C.
Kuehn
,
J.
Kurths
, and
S.
Yanchuk
, “
Adaptive dynamical networks
,”
Phys. Rep.
1031
,
1
59
(
2023
).
8.
D. V.
Kasatkin
,
S.
Yanchuk
,
E.
Schöll
, and
V. I.
Nekorkin
, “
Self-organized emergence of multilayer structure and chimera states in dynamical networks with adaptive couplings
,”
Phys. Rev. E
96
,
062211
(
2017
).
9.
R.
Berner
,
E.
Scholl
, and
S.
Yanchuk
, “
Multiclusters in networks of adaptively coupled phase oscillators
,”
SIAM J. Appl. Dyn. Syst.
18
,
2227
2266
(
2019
).
10.
R.
Berner
,
S.
Vock
,
E.
Schöll
, and
S.
Yanchuk
, “
Desynchronization transitions in adaptive networks
,”
Phys. Rev. Lett.
126
,
028301
(
2021
).
11.
X. S.
Liang
, “
Measuring the importance of individual units in producing the collective behavior of a complex network
,”
Chaos
31
,
093123
(
2021
).
12.
A. T.
Winfree
, “
Biological rhythms and the behavior of populations of coupled oscillators
,”
J. Theor. Biol.
16
,
15
42
(
1967
).
13.
Y.
Kuramoto
, “Self-entrainment of a population of coupled non-linear oscillators,” in International Symposium on Mathematical Problems in Theoretical Physics (Springer, 1975), pp. 420–422.
14.
F. A.
Rodrigues
,
T. K. D.
Peron
,
P.
Ji
, and
J.
Kurths
, “
The Kuramoto model in complex networks
,”
Phys. Rep.
610
,
1
98
(
2016
).
15.
A.
Arenas
,
A.
Díaz-Guilera
,
J.
Kurths
,
Y.
Moreno
, and
C.
Zhou
, “
Synchronization in complex networks
,”
Phys. Rep.
469
,
93
153
(
2008
).
16.
J.
Gómez-Gardeñes
,
Y.
Moreno
, and
A.
Arenas
, “
Paths to synchronization on complex networks
,”
Phys. Rev. Lett.
98
,
034101
(
2007
).
17.
J.
Gómez-Gardeñes
,
S.
Gómez
,
A.
Arenas
, and
Y.
Moreno
, “
Explosive synchronization transitions in scale-free networks
,”
Phys. Rev. Lett.
106
,
128701
(
2011
).
18.
X.
Zhang
,
X.
Hu
,
J.
Kurths
, and
Z.
Liu
, “
Explosive synchronization in a general complex network
,”
Phys. Rev. E
88
,
010802
(
2013
).
19.
X.
Zhang
,
S.
Boccaletti
,
S.
Guan
, and
Z.
Liu
, “
Explosive synchronization in adaptive and multilayer networks
,”
Phys. Rev. Lett.
114
,
038701
(
2015
).
20.
N.
Frolov
,
S.
Rakshit
,
V.
Maksimenko
,
D.
Kirsanov
,
D.
Ghosh
, and
A.
Hramov
, “
Coexistence of interdependence and competition in adaptive multilayer network
,”
Chaos, Solitons Fractals
147
,
110955
(
2021
).
21.
N.
Frolov
and
A.
Hramov
, “
Extreme synchronization events in a Kuramoto model: The interplay between resource constraints and explosive transitions
,”
Chaos
31
,
063103
(
2021
).
22.
N.
Frolov
and
A.
Hramov
, “
Self-organized bistability on scale-free networks
,”
Phys. Rev. E
106
,
044301
(
2022
).
23.
M. S.
Anwar
and
D.
Ghosh
, “
Synchronization in temporal simplicial complexes
,”
SIAM J. Appl. Dyn. Syst.
22
,
2054
2081
(
2023
).
24.
B.
Moyal
,
P.
Rajwani
,
S.
Dutta
, and
S.
Jalan
, “
Rotating clusters in phase-lagged Kuramoto oscillators with higher-order interactions
,”
Phys. Rev. E
109
,
034211
(
2024
).
25.
E.
Ott
and
T. M.
Antonsen
, “
Low dimensional behavior of large systems of globally coupled oscillators
,”
Chaos
18
,
037113
(
2008
).
26.
A.
Sharma
,
P.
Rajwani
, and
S.
Jalan
, “
Synchronization transitions in adaptive Kuramoto–Sakaguchi oscillators with higher-order interactions
,”
Chaos
34
,
081103
(
2024
).
27.
S. N.
Jenifer
,
D.
Ghosh
, and
P.
Muruganandam
, “
Synchronizability in randomized weighted simplicial complexes
,”
Phys. Rev. E
109
,
054302
(
2024
).
You do not currently have access to this content.