Identifying complex periodic windows surrounded by chaos in the two or higher dimensional parameter space of certain dynamical systems is a challenging task for time series analysis based on complex network approaches. This holds particularly true for the case of shrimp structures, where different bifurcations occur when crossing different domain boundaries. The corresponding dynamics often exhibit either period-doubling when crossing the inner boundaries or, respectively, intermittency for outer boundaries. Numerically characterizing especially the period-doubling route to chaos is difficult for most existing complex network based time series analysis approaches. Here, we propose to use ordinal pattern transition networks (OPTNs) to characterize shrimp structures, making use of the fact that the transition behavior between ordinal patterns encodes additional dynamical information that is not captured by traditional ordinal measures such as permutation entropy. In particular, we compare three measures based on ordinal patterns: traditional permutation entropy ε O, average amplitude fluctuations of ordinal patterns σ , and OPTN out-link transition entropy ε E. Our results demonstrate that among those three measures, ε E performs best in distinguishing chaotic from periodic time series in terms of classification accuracy. Therefore, we conclude that transition frequencies between ordinal patterns encoded in the OPTN link weights provide complementary perspectives going beyond traditional methods of ordinal time series analysis that are solely based on pattern occurrence frequencies.

1.
J.
Zhang
and
M.
Small
,
Phys. Rev. Lett.
96
,
238701
(
2006
).
2.
L.
Lacasa
,
B.
Luque
,
F.
Ballesteros
,
J.
Luque
, and
J. C.
Nuno
,
Proc. Natl. Acad. Sci. U.S.A.
105
,
4972
(
2008
).
3.
N.
Marwan
,
J. F.
Donges
,
Y.
Zou
,
R. V.
Donner
, and
J.
Kurths
,
Phys. Lett. A
373
,
4246
(
2009
).
4.
R. V.
Donner
,
Y.
Zou
,
J. F.
Donges
,
N.
Marwan
, and
J.
Kurths
,
New J. Phys.
12
,
033025
(
2010
).
5.
J. Y.
Zhang
,
J.
Zhou
,
M.
Tang
,
H.
Guo
,
M.
Small
, and
Y.
Zou
,
Sci. Rep.
7
,
7795
(
2017
).
6.
Y.
Zou
,
R. V.
Donner
,
N.
Marwan
,
J. F.
Donges
, and
J.
Kurths
,
Phys. Rep.
787
,
1
(
2019
).
7.
J. S. A. E.
Fouda
,
W.
Koepf
,
N.
Marwan
,
J.
Kurths
, and
T.
Penzel
,
Chaos, Solitons Fractals
181
,
114708
(
2024
).
8.
A.
Nuñez
,
L.
Lacasa
,
J.
Patricio
, and
B.
Luque
, in New Frontiers in Graph Theory (InTech, 2012), Chap. 6, pp. 119–152.
9.
G.
Nicolis
,
A. G.
Cantu
, and
C.
Nicolis
,
Int. J. Bifurcat. Chaos
15
,
3467
(
2005
).
10.
X.
Xu
,
J.
Zhang
, and
M.
Small
,
Proc. Natl. Acad. Sci. U.S.A.
105
,
19601
(
2008
).
11.
M.
McCullough
,
M.
Small
,
T.
Stemler
, and
H. H.-C.
Iu
,
Chaos
25
,
053101
(
2015
).
12.
M.
McCullough
,
M.
Small
,
H. H. C.
Iu
, and
T.
Stemler
,
Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
375
,
20160292
(
2017
).
13.
H.
Kantz
and
T.
Schreiber
,
Nonlinear Time Series Analysis
, 2nded. (
Cambridge University Press
,
Cambridge
,
2004
).
14.
C.
Bandt
and
B.
Pompe
,
Phys. Rev. Lett.
88
,
174102
(
2002
).
15.
M.
Zanin
and
F.
Olivares
,
Commun. Phys.
4
,
190
(
2021
).
16.
Y.
Hirata
and
J. M.
Amigó
,
Chaos
33
,
052101
(
2023
).
17.
C. W.
Kulp
,
J. M.
Chobot
,
H. R.
Freitas
, and
G. D.
Sprechini
,
Chaos
26
,
073114
(
2016
).
18.
Y.
Ruan
,
R. V.
Donner
,
S.
Guan
, and
Y.
Zou
,
Chaos
29
,
043111
(
2019
).
19.
J. A.
Almendral
,
I.
Leyva
, and
I.
Sendiña-Nadal
,
Entropy
25
,
1079
(
2023
).
21.
23.
Y.
Zou
,
M.
Thiel
,
M.
Romano
,
Q.
Bi
, and
J.
Kurths
,
Int. J. Bifurcat. Chaos Appl. Sci. Eng.
16
,
3567
(
2006
).
24.
C.
Bonatto
,
J.
Garreau
, and
J.
Gallas
,
Phys. Rev. Lett.
95
,
143905
(
2005
).
25.
R. M.
da Silva
,
N. S.
Nicolau
,
C.
Manchein
, and
M. W.
Beims
,
Phys. Rev. E
98
,
032210
(
2018
).
26.
M.
Mugnaine
,
M. R.
Sales
,
J. D.
Szezech
, and
R. L.
Viana
,
Phys. Rev. E
106
,
034203
(
2022
).
27.
V. E.
Camargo
,
A. S.
Amaral
,
A. F.
Crepaldi
, and
F. F.
Ferreira
,
Chaos
32
,
103112
(
2022
).
28.
E. S.
Medeiros
,
U.
Feudel
, and
A.
Zakharova
,
Phys. Rev. E
104
,
024302
(
2021
).
29.
J. A. C.
Gallas
and
L. F.
Olsen
,
Chaos
32
,
063122
(
2022
).
30.
E. L.
Brugnago
,
E. C.
Gabrick
,
K. C.
Iarosz
,
J. D.
Szezech
,
R. L.
Viana
,
A. M.
Batista
, and
I. L.
Caldas
,
Chaos
33
,
123123
(
2023
).
31.
Á. G.
López
,
R.
Ali
,
L.
Mandi
, and
P.
Chatterjee
,
Chaos
31
,
013104
(
2021
).
32.
C.
Bonatto
and
J. A. C.
Gallas
,
Phys. Rev. Lett.
101
,
054101
(
2008
).
33.
R.
Stoop
,
P.
Benner
, and
Y.
Uwate
,
Phys. Rev. Lett.
105
,
074102
(
2010
).
34.
C.
Bonatto
and
J.
Gallas
,
Phys. Rev. E
75
,
055204
(
2007
).
35.
E.
Barreto
,
B.
Hunt
,
C.
Grebogi
, and
J.
Yorke
,
Phys. Rev. Lett.
78
,
4561
(
1997
).
36.
J. M.
Amigó
,
K.
Keller
, and
V. A.
Unakafova
,
Philos. Trans. R. Soc. A
373
,
20140091
(
2014
).
37.
J. M.
Amigó
and
O. A.
Rosso
,
Chaos
33
,
080401
(
2023
).
38.
F.
Takens
, in Dynamical Systems and Turbulence, Warwick 1980, Lecture Notes in Mathematics, Vol. 898, edited by D. Rand and L.-S. Young (Springer, New York, 1981), pp. 366–381.
40.
O. A.
Rosso
,
H. A.
Larrondo
,
M. T.
Martin
,
A.
Plastino
, and
M. A.
Fuentes
,
Phys. Rev. Lett.
99
,
154102
(
2007
).
41.
R.
López-Ruiz
,
H. L.
Mancini
, and
X.
Calbet
,
Phys. Lett. A
209
,
321
(
1995
).
42.
A. M.
Kowalski
,
M. T.
Martin
,
A.
Plastino
,
O. A.
Rosso
, and
M.
Casas
,
Entropy
13
,
1055
(
2011
).
43.
M.
Huang
,
Z.
Sun
,
R. V.
Donner
,
J.
Zhang
,
S.
Guan
, and
Y.
Zou
,
Chaos
31
,
033127
(
2021
).
44.
S.
Zambrano
,
I. P.
Mariño
, and
M. A. F.
Sanjuán
,
New J. Phys.
11
,
023025
(
2009
).
45.
A. C.
Fowler
and
M. J.
Mcguinness
,
ANZIAM J.
65
,
93
110
(
2023
).
46.
Y.
Zou
,
R. V.
Donner
,
J. F.
Donges
,
N.
Marwan
, and
J.
Kurths
,
Chaos
20
,
043130
(
2010
).
47.
M.
Hollander
and
D. A.
Wolfe
,
Nonparametric Statistical Methods
, 2nded. (
Wiley
,
New York
,
1999
).
48.
T.
Fawcett
,
Pattern Recognit. Lett.
27
,
861
(
2006
).
49.
J. M.
Amigó
,
S.
Zambrano
, and
M. A. F.
Sanjuán
,
Europhys. Lett.
79
,
50001
(
2007
).
You do not currently have access to this content.