We report the peculiar organization of oscillations in the forced Brusselator system, found in the parameter space as a nested structure of regular and chaotic phases. To this end, we apply the winding number concept, conceived for nonlinear driven oscillators, to expose all oscillatory phases in the nested structure. First, we use the period and torsion of orbits to describe every periodic oscillation in the parameter spaces, describing the nested structure in high-resolution phase diagrams. Next, we propose a basic structure organizing the periodicity, a “skeletal set” whose properties elucidate the genealogy and composition of oscillations in the nested structure. Finally, we discuss the application of the skeletal structure in a diversity of Brusselator’s oscillatory regimes.

1.
J. A. C.
Gallas
, “
Periodic oscillations of the forced Brusselator
,”
Mod. Phys. Lett. B
29
,
1530018-1530021
(
2015
).
2.
J. G.
Freire
,
M. R.
Gallas
, and
J. A. C.
Gallas
, “
Stability mosaics in a forced Brusselator
,”
Eur. Phys. J. Special Topics
226
,
1987
(
2017
).
3.
J. G.
Freire
,
M. R.
Gallas
, and
J. A. C.
Gallas
, “
Chaos-free oscillations
,”
Europhys. Lett.
118
(3),
38003
(
2017
).
4.
I.
Prigogine
and
R.
Lefever
, “
Symmetry breaking instabilities in dissipative systems II
,”
J. Chem. Phys.
48
,
1695
(
1968
)
R.
Lefever
, “
Dissipative structures in chemical systems
,”
J. Chem. Phys.
49
,
4977
(
1968
)
R.
Lefever
and
G.
Nicolis
: ‘
Chemical instabilities and sustained oscillations
.’
J. Theor. Biol.
30
,
267
(
1971
)
[PubMed]
G.
Nicolis
, and
I.
Prigogine
,
Self-Organization in Equilibrium Systems
(
New York, Wiley
,
1977
).
5.
K.
Tomita
,
T.
Kai
, and
F.
Hikami
, “
Entrainment of a limit cycle by a periodic external excitation
,”
Prog. Theor. Phys.
57
,
1159
(
1977
).
6.
T.
Kai
and
K.
Tomita
, “
Stroboscopic phase portrait of forced nonlinear oscillator
,”
Prog. Theor. Phys.
61
,
54
(
1979
).
7.
K.
Tomita
, “
Chaotic response of nonlinear oscillators
,”
Phys. Rep.
86
,
113
(
1982
).
8.
K.
Tomita
and
T.
Kai
, “
Stroboscopic phase portrait and strange attractors
,”
Phys. Lett. A
66
,
91
(
1978
).
9.
K.
Tomita
and
T.
Kai
, “
Chaotic response of a limit cycle
,”
J. Stat. Phys.
21
,
65
(
1979
).
10.
B. L.
Hao
and
S. Y.
Zhang
, “
Hierarchy of chaotic bands
,”
J. Stat. Phys.
28
,
769
(
1982
).
11.
B.-L.
Hao
and
S.-Y.
Zhang
, “
Hierarchy of chaotic bands and periodicities embedded in them in a forced nonlinear oscillator
,”
Commun. Theor. Phys.
1
,
111
(
1982
).
12.
B.-L.
Hao
and
S.-Y.
Zhang
, “
Subharmonic stroboscopy as a method to study period-doubling bifurcations
,”
Phys. Lett. A
87
,
267
(
1982
).
13.
B.-L.
Hao
,
G.-R.
Wang
, and
S.-Y.
Zhang
, “
U-sequences in the periodically forced Brusselator
,”
Commun. Theor. Phys.
2
,
1075
(
1983
).
14.
B. L.
Hao
, “
Symbolic dynamics and systematics of periodic windows
,”
Physica A
140
,
85
(
1986
).
15.
B. L.
Hao
,
Elementary Symbolic Dynamics and Chaos in Dissipative Dynamical Systems
(
World Scientific
,
1989
).
16.
C.
Knudsen
,
J.
Sturis
, and
J. S.
Thomsen
, “
Generic bifurcation structures of Arnol’d tongues in forced oscillators
,”
Phys. Rev. A
44
,
3503
(
1991
).
17.
M. W.
Olesen
and
C.
Knudsen
, “
Destruction of dominant Arnold’s tongue in forced oscillators
,”
Int. J. Bifurcation Chaos
4
,
737
(
1994
).
18.
P. C.
Rech
, “
Nonlinear dynamics of two discrete-time versions of the continuous-time Brusselator model
,”
Int. J. Bifurcation Chaos
29
(10),
1950142
(
2019
).
19.
U.
Parlitz
and
W.
Lauterborn
, “
Resonances and torsion number of driven dissipative nonlinear oscillator
,”
Z. Naturforsch.
41a
,
605
(
1986
).
20.
U.
Parlitz
and
W.
Lauterborn
, “
Period-doubling cascades and devil’s staircases of driven van der Pol oscillator
,”
Phys. Rev. A
36
,
1428
(
1987
).
21.
J.
Jeong
and
S.-Y.
Kim
, “
Bifurcations in a horizontally driven pendulum
,”
J. Korean Phys. Soc.
35
(5),
393
(
1999
).
22.
E. S.
Medeiros
,
R. O.
Medrano-T
,
I. L.
Caldas
, and
S. L. T.
de Souza
, “
Torsion-adding and asymptotic winding number for periodic window sequences
,”
Phys. Lett. A
377
,
628
(
2013
).
23.
V.
Englisch
,
U.
Parlitz
, and
W.
Lauterborn
, “
Comparison of winding-number sequences for symmetric and asymmetric oscillatory systems
,”
Phys. Rev. E
92
,
022907
(
2015
).
24.
F.
Hegedűs
, “
Topological analysis of the periodic structures in a harmonically driven bubble oscillator near Blake’s critical threshold: Infinite sequence of two-sided Farey ordering trees
,”
Phys. Lett. A
380
(9–10),
1012
(
2016
).
25.
K.
Klapcsik
and
F.
Hegedüs
, “
The effect of high viscosity on the evolution of the bifurcation set of a periodically excited gas bubble
,”
Chaos Soliton. Fract.
104
,
198
(
2017
).
26.
A.
Wolf
,
J. B.
Swift
,
H. L.
Swinney
, and
J. A.
Vastano
, “
Determining Lyapunov exponents from a time series
,”
Physica D
16
,
285-317
(
1985
).
27.
For a period- m orbit to be considered stable, its eigenvalues μ i must to respect the condition | μ i | 1. Considering μ i as a real value, a nearby orbit converge to the stable orbit by two modes: monotonically if μ i > 0; or nonmonotonically if μ i < 0. Under parameter variation, the orbit eigenvalue (typically) goes from μ i = 1 > 0 (a saddle-node bifurcation) to μ i = 1 < 0 (period-doubling) realizing a π rad phase difference or | Δ n | = 1 / 2 turn torsion.19,22,30–33
28.
L. R.
Ford
, “
Fractions
,”
Amer. Math. Monthly
45
,
586
(
1938
).
29.
S. P.
Glasby
, “
Enumerating the rationals from left to right
,”
Amer. Math. Monthly
118
,
830
(
2011
).
30.
W.
Façanha
,
B.
Oldeman
, and
L.
Glass
, “
Bifurcation structures in two-dimensional maps: The endoskeletons of shrimps
,”
Phys. Lett. A
377
,
1264
(
2013
).
31.
P.
Beiersdorfer
, “
Universality of the topology of period doubling dynamical systems
,”
Phys. Lett. A
100
,
379
(
1984
).
32.
E.
Barreto
,
B. R.
Hunt
,
C.
Grebogi
, and
J. A.
Yorke
, “
From high dimensional chaos to stable periodic orbits: The structure of parameter space
,”
Phys. Rev. Lett.
78
,
4561
(
1997
).
33.
M. S.
Baptista
,
C.
Grebogi
, and
E.
Barreto
, “
Topology of windows in the high-dimensional parameter space of chaotic maps
,”
Int. J. Bifurcation Chaos
13
,
2681
(
2003
).
34.
C.
Scheffczyk
,
U.
Parlitz
,
T.
Kurz
,
W.
Knop
, and
W.
Lauterborn
, “
Comparison of bifurcation structures of driven dissipative nonlinear oscillators
,”
Phys. Rev. A
43
,
6495
(
1991
).
35.
U.
Parlitz
, “
Common dynamical features of periodically driven strictly dissipative oscillators
,”
Int. J. Bifurcation Chaos
3
,
703
(
1993
).
36.
K.
Klapcsik
,
R.
Varga
, and
F.
Hegedüs
, “
Bi-parametric topology of subharmonics of an asymmetric bubble oscillator at high dissipation rate
,”
Nonlinear Dyn.
94
,
2373
(
2018
).
You do not currently have access to this content.