This paper presents a comprehensive analysis of a discrete-time predator–prey model within a homogeneous two-patch environment, incorporating both prey and predator dispersal. We consider a logistic growth for both prey and predator species, and the predation process is based on the Holling type-II functional response in the isolated patches. We explore the existence of multiple coexisting equilibria and establish their stability conditions. By independently varying the prey and predator dispersal rates, we discover a sequence of phenomena including bifurcations, quasiperiodicity, and chaos. In addition, we observe a 10-period orbit, each point of the periodic orbit gives birth to a closed invariant curve. Such large number of closed invariant curves are generally not reported in spatially coupled population models. The system exhibits both catastrophic (non-smooth) jumps and smooth transitions in the dynamics whenever a bifurcation occurs. Commonly, dispersal can only destabilize the coexisting equilibrium. However, we found the stabilization of the coexisting equilibrium, which is a rare occurrence. Furthermore, a two-parameter space analysis reveals intricate dynamics when both dispersal rates are varied simultaneously, showcasing complex phenomena and the emergence of organized periodic regimes such as Arnold tongues and shrimp structures. We also investigate the stock pattern of both species with respect to the dispersal. This study enhances the understanding of predator–prey interactions in spatially homogeneous environments, illuminating their intricate and dynamic nature.

1.
H.
Kook
,
F.
Ling
, and
G.
Schmidt
,
Phys. Rev. A
43
,
2700
(
1991
).
2.
K. E.
Kürten
and
G.
Nicolis
,
Phys. A
245
,
446
(
1997
).
3.
Y. L.
Maistrenko
,
V.
Maistrenko
,
A.
Popovich
, and
E.
Mosekilde
,
Phys. Rev. E
57
,
2713
(
1998
).
4.
R.
Carvalho
,
B.
Fernandez
, and
R. V.
Mendes
,
Phys. Lett. A
285
,
327
(
2001
).
5.
P. C.
Rech
,
M. W.
Beims
, and
J. A.
Gallas
,
Phys. A
342
,
351
(
2004
).
6.
S. R.
Ujjwal
,
N.
Punetha
,
R.
Ramaswamy
,
M.
Agrawal
, and
A.
Prasad
,
Chaos
26
(6),
063111
(
2016
).
7.
D. R.
da Costa
,
J. G.
Rocha
,
L. S.
de Paiva
, and
R. O.
Medrano-T
,
Chaos, Solitons Fractals
144
,
110688
(
2021
).
8.
S.
Bhalekar
and
P. M.
Gade
,
Commun. Nonlinear Sci. Numer. Simul.
113
,
106587
(
2022
).
9.
I.
Bashkirtseva
and
A.
Pisarchik
,
AIP Conf. Proc.
2172
(1), 070004 (2019).
10.
A. P.
Kuznetsov
,
Y. V.
Sedova
, and
N. V.
Stankevich
,
Chaos, Solitons Fractals
186
,
115237
(
2024
).
11.
P. C.
Rech
,
Chaos, Solitons Fractals
41
,
1949
(
2009
).
12.
I.
Bashkirtseva
and
L.
Ryashko
,
Chaos
31
(5),
053101
(
2021
).
13.
G.
Layek
and
N.
Pati
,
Chaos
29
(9),
093104
(
2019
).
14.
R.
Kon
and
D.
Kumar
,
Theor. Popul. Biol.
150
,
14
(
2023
).
16.
R.
Cressman
and
V.
Křivan
,
J. Math. Biol.
67
,
329
(
2013
).
17.
Y.
Kang
,
S. K.
Sasmal
, and
K.
Messan
,
Math. Biosci. Eng.
14
,
843
(
2017
).
18.
A.
Mai
,
G.
Sun
, and
L.
Wang
,
Bull. Math. Biol.
81
,
1337
(
2019
).
19.
D.
Sen
and
L.
Přibylová
,
Commun. Nonlinear Sci. Numer. Simul.
137
,
108154
(
2024
).
20.
C.
Grumbach
,
F. N.
Reurik
,
J.
Segura
,
D.
Franco
, and
F. M.
Hilker
,
J. Math. Biol.
87
,
60
(
2023
).
22.
M. O.
Al-Kaff
,
H. A.
El-Metwally
,
A.-E. A.
Elsadany
, and
E. M.
Elabbasy
,
Sci. Rep.
14
,
16118
(
2024
).
23.
24.
B.
Barman
and
B.
Ghosh
,
Int. J. Modell. Simul.
42
,
400
(
2022
).
25.
R.
Ghosh
,
U. K.
Verma
,
S.
Jalan
, and
M. D.
Shrimali
,
Chaos
34
(6),
061101
(
2024
).
26.
R. C.
Hilborn
,
Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers
(
Oxford University Press
,
2000
).
27.
P. C.
Rech
,
M. W.
Beims
, and
J. A.
Gallas
,
Chaos, Solitons Fractals
33
,
1394
(
2007
).
28.
E. C.
Gabrick
,
E. L.
Brugnago
,
A. L.
de Moraes
,
P. R.
Protachevicz
,
S. T.
da Silva
,
F. S.
Borges
,
I. L.
Caldas
,
A. M.
Batista
, and
J.
Kurths
,
Chaos
34
(9),
093118
(
2024
).
29.
M.
Sieber
and
F. M.
Hilker
,
J. Math. Biol.
64
,
341
(
2012
).
30.
E.
Liz
and
A.
Ruiz-Herrera
,
J. Math. Biol.
65
,
997
(
2012
).
31.
N.
Takashina
and
A.
Mougi
,
J. Theor. Biol.
341
,
64
(
2014
).
32.
B.
Ghosh
,
D.
Pal
,
T.
Kar
, and
J. C.
Valverde
,
Math. Biosci.
286
,
49
(
2017
).
34.
P. A.
Abrams
and
J. D.
Roth
,
Ecology
75
,
1118
(
1994
).
35.
K. D.
Kantarakias
,
K.
Shawki
, and
G.
Papadakis
,
Phys. Rev. E
101
,
022223
(
2020
).
36.
D.
Pattanayak
,
A.
Mishra
,
S. K.
Dana
, and
N.
Bairagi
,
Chaos
31
,
073124
(
2021
).
37.
Rajni
and
B.
Ghosh
,
Chaos, Solitons Fractals
162
,
112497
(
2022
).
38.
I.
Vortkamp
,
C.
Kost
,
M.
Hermann
, and
F. M.
Hilker
, bioRxiv (2022).
39.
N. N.
Doanh
,
T.
Nguyen-Huu
, and
P.
Auger
,
J. Theor. Biol.
595
,
111913
(
2024
).
40.
N.
Takashina
,
A.
Mougi
, and
Y.
Iwasa
,
Popul. Ecol.
54
,
475
(
2012
).
41.
B.
Ghosh
,
F.
Grognard
, and
L.
Mailleret
,
Appl. Math. Comput.
266
,
982
(
2015
).
42.
43.
S.
Saha
and
G.
Samanta
,
Int. J. Dyn. Control
7
,
1321
(
2019
).
44.
S.
Aly
and
M.
Farkas
,
Nonlinear Anal.: Real World Appl.
5
,
519
(
2004
).
45.
R.
Mchich
,
P.
Auger
, and
J.-C.
Poggiale
,
Math. Biosci.
206
,
343
(
2007
).
46.
Y.
Kuang
and
Y.
Takeuchi
,
Math. Biosci.
120
,
77
(
1994
).
47.
J.
Poggiale
,
Math. Comput. Modell.
27
,
63
(
1998
).
48.
Y.
Kang
and
C.
Castillo-Chavez
,
J. Biol. Dyn.
6
,
50
(
2012
).
49.
G.
Sun
and
A.
Mai
,
Adv. Differ. Equ.
2018
,
1
(
2018
).
50.
W.
Choi
,
K.
Kim
, and
I.
Ahn
,
J. Math. Anal. Appl.
525
,
127130
(
2023
).
51.
P.
Auger
,
B.
Kooi
, and
A.
Moussaoui
,
Ecol. Modell.
467
,
109898
(
2022
).
52.
P.
Erm
,
A.
Balmford
,
N. C.
Krueck
,
N.
Takashina
, and
M. H.
Holden
,
J. Appl. Ecol.
61
,
621
(
2024
).
53.
G.
Wang
,
X.
Zhang
,
Y.
Zheng
, and
Y.
Li
,
Phys. A
371
,
260
(
2006
).
54.
I. Y.
Goldsheid
and
E.
Sorets
, “Lyapunov exponents of the Schrödinger equation with quasi-periodic potential on a strip,”
Commun. Math. Phys.
145
,
507–513
(
1992
).
55.
S.
Kumarasamy
,
I. M.
Moroz
,
S. K.
Sampathkumar
,
A.
Karthikeyan
, and
K.
Rajagopal
,
Eur. Phys. J. Plus
138
,
683
(
2023
).
56.
Y. A.
Kuznetsov
,
I. A.
Kuznetsov
, and
Y.
Kuznetsov
,
Elements of Applied Bifurcation Theory
(
Springer
,
1998
), Vol. 112.
57.
E. L.
Brugnago
,
E. C.
Gabrick
,
K. C.
Iarosz
,
J. D.
Szezech
,
R. L.
Viana
,
A. M.
Batista
, and
I. L.
Caldas
,
Chaos
33
(12),
123123
(
2023
).
58.
E. C.
Gabrick
,
E.
Sayari
,
P. R.
Protachevicz
,
J. D.
Szezech
, Jr.
,
K. C.
Iarosz
,
S. L.
de Souza
,
A. C.
Almeida
,
R. L.
Viana
,
I. L.
Caldas
, and
A. M.
Batista
,
Chaos, Solitons Fractals
166
,
113001
(
2023
).
You do not currently have access to this content.