This study examines the dynamical properties of the Ikeda map, with a focus on bifurcations and chaotic behavior. We investigate how variations in dissipation parameters influence the system, uncovering shrimp-shaped structures that represent intricate transitions between regular and chaotic dynamics. Key findings include the analysis of period-doubling bifurcations and the onset of chaos. We utilize Lyapunov exponents to distinguish between stable and chaotic regions. These insights contribute to a deeper understanding of nonlinear and chaotic dynamics in optical systems.
REFERENCES
1.
E. N.
Lorenz
, “Deterministic nonperiodic flow
,” J. Atmos. Sci.
20
, 130
–141
(1963
). 2.
J. A.
Gallas
, “Structure of the parameter space of the Hénon map
,” Phys. Rev. Lett.
70
, 2714
(1993
). 3.
R. M.
May
, “Simple mathematical models with very complicated dynamics
,” Nature
261
, 459
–467
(1976
). 4.
S. H.
Strogatz
, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering
(CRC Press
, 2018
).5.
J.
Guckenheimer
and P.
Holmes
, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
(Springer Science & Business Media
, 2013
), Vol. 42.6.
F.
Moon
and P. J.
Holmes
, “A magnetoelastic strange attractor
,” J. Sound Vib.
65
, 275
–296
(1979
). 7.
S. O.
Kamphorst
and S. P.
de Carvalho
, “Bounded gain of energy on the breathing circle billiard
,” Nonlinearity
12
, 1363
(1999
). 8.
D. F. M.
Oliveira
and E. D.
Leonel
, “On the dynamical properties of an elliptical–oval billiard with static boundary
,” Commun. Nonlinear Sci. Numer. Simul.
15
, 1092
–1102
(2010
). 9.
D. F. M.
Oliveira
and M.
Robnik
, “Scaling invariance in a time-dependent elliptical billiard
,” Int. J. Bifurc. Chaos
22
, 1250207
(2012
). 10.
L. D.
Pustyl’nikov
, “Construction of periodic solutions in an infinite system of Fermi-Pasta-Ulam ordinary differential equations, stability, and KAM theory
,” Russ. Math. Surv.
50
, 449
(1995
).11.
Y. G.
Sinai
, “Dynamical systems with elastic reflections
,” Russ. Math. Surv.
25
, 137
(1970
). 12.
L. A.
Bunimovich
, “On the ergodic properties of nowhere dispersing billiards
,” Commun. Math. Phys.
65
, 295
–312
(1979
). 13.
M.
Robnik
, “Classical dynamics of a family of billiards with analytic boundaries
,” J. Phys. A: Math. Gen.
16
, 3971
(1983
). 14.
D. F. M.
Oliveira
, J.
Vollmer
, and E. D.
Leonel
, “Fermi acceleration and its suppression in a time-dependent Lorentz gas
,” Phys. D
240
, 389
–396
(2011
). 15.
D. F. M.
Oliveira
and E. D.
Leonel
, “In-flight and collisional dissipation as a mechanism to suppress Fermi acceleration in a breathing Lorentz gas
,” Chaos
22
, 026123
(2012
).16.
E. D.
Leonel
and P.
McClintock
, “A hybrid Fermi–Ulam-bouncer model
,” J. Phys. A: Math. Gen.
38
, 823
(2005
). 17.
D. F. M.
Oliveira
, R. A.
Bizao
, and E. D.
Leonel
, “Scaling properties of a hybrid Fermi-Ulam-bouncer model,” Math. Probl. Eng.
2009
(1), 1–13
.18.
D. F. M.
Oliveira
, E. D.
Leonel
, and M.
Robnik
, “Boundary crisis and transient in a dissipative relativistic standard map
,” Phys. Lett. A
375
, 3365
–3369
(2011
). 19.
D. F. M.
Oliveira
, M. R.
Silva
, and E. D.
Leonel
, “A symmetry break in energy distribution and a biased random walk behavior causing unlimited diffusion in a two dimensional mapping
,” Phys. A
436
, 909
–915
(2015
). 20.
E. D.
Leonel
, M. V. C.
Galia
, L. A.
Barreiro
, and D. F. M.
Oliveira
, “Thermodynamics of a time-dependent and dissipative oval billiard: A heat transfer and billiard approach
,” Phys. Rev. E
94
, 062211
(2016
). 21.
G.
Page
, C.
Antoine
, C. P.
Dettmann
, and J.
Talbot
, “The Iris billiard: Critical geometries for global chaos
,” Chaos
30
, 123105
(2020
). 22.
K.
Ikeda
, “Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system
,” Opt. Commun.
30
, 257
–261
(1979
). 23.
K.
Ikeda
, H.
Daido
, and O.
Akimoto
, “Optical turbulence: Chaotic behavior of transmitted light from a ring cavity
,” Phys. Rev. Lett.
45
, 709
(1980
). 24.
S.
Watanabe
and S. H.
Strogatz
, “Constants of motion for superconducting Josephson arrays
,” Phys. D
74
, 197
–253
(1994
). 25.
P. S.
Linsay
, “Period doubling and chaotic behavior in a driven anharmonic oscillator
,” Phys. Rev. Lett.
47
, 1349
(1981
). 26.
D. F. M.
Oliveira
and E. D.
Leonel
, “The Feigenbaum’s delta for a high dissipative bouncing ball model
,” Braz. J. Phys.
38
, 62
–64
(2008
). 27.
M. J.
Feigenbaum
, “Quantitative universality for a class of nonlinear transformations
,” J. Stat. Phys.
19
, 25
–52
(1978
). 28.
M. J.
Feigenbaum
, “The universal metric properties of nonlinear transformations
,” J. Stat. Phys.
21
, 669
–706
(1979
). 29.
M.
Hanias
, Z.
Avgerinos
, and G.
Tombras
, “Period doubling, Feigenbaum constant and time series prediction in an experimental chaotic RLD circuit
,” Chaos, Solitons Fractals
40
, 1050
–1059
(2009
). 30.
H.-K.
Chen
, L.-J.
Sheu
, L.-M.
Tam
, and S.-K.
Lao
, “A new finding of the existence of Feigenbaum’s constants in the fractional-order Chen–Lee system
,” Nonlinear Dyn.
68
, 589
–599
(2012
). 31.
P.
Gaspard
, R.
Kapral
, and G.
Nicolis
, “Bifurcation phenomena near homoclinic systems: A two-parameter analysis
,” J. Stat. Phys.
35
, 697
–727
(1984
). 32.
J.
Rössler
, M.
Kiwi
, B.
Hess
, and M.
Markus
, “Modulated nonlinear processes and a novel mechanism to induce chaos
,” Phys. Rev. A
39
, 5954
(1989
).33.
M.
Komuro
, R.
Tokunaga
, T.
Matsumoto
, L.
Chua
, and A.
Hotta
, “Global bifurcation analysis of the double scroll circuit
,” Int. J. Bifurc. Chaos
1
, 139
–182
(1991
). 34.
R.
Vitolo
, P.
Glendinning
, and J. A.
Gallas
, “Global structure of periodicity hubs in Lyapunov phase diagrams of dissipative flows
,” Phys. Rev. E
84
, 016216
(2011
). 35.
J.
Gallas
, “Structure of the parameter space of a ring cavity
,” Appl. Phys. B: Lasers Opt.
60
, S203
(1995
).36.
J. A.
Gallas
, “Dissecting shrimps: Results for some one-dimensional physical models
,” Phys. A
202
, 196
–223
(1994
). 37.
B. R.
Hunt
, J. A.
Gallas
, C.
Grebogi
, J. A.
Yorke
, and H.
Koçak
, “Bifurcation rigidity
,” Phys. D
129
, 35
–56
(1999
). 38.
C.
Bonatto
, J. C.
Garreau
, and J. A.
Gallas
, “Self-similarities in the frequency-amplitude space of a loss-modulated CO
laser
,” Phys. Rev. Lett.
95
, 143905
(2005
). 39.
D. F. M.
Oliveira
, M.
Robnik
, and E. D.
Leonel
, “Shrimp-shape domains in a dissipative kicked rotator
,” Chaos
21
, 043122
(2011
). 40.
D. F. M.
Oliveira
and E. D.
Leonel
, “Some dynamical properties of a classical dissipative bouncing ball model with two nonlinearities
,” Phys. A
392
, 1762
–1769
(2013
). 41.
D. F. M.
Oliveira
and E. D.
Leonel
, “Dynamical properties for the problem of a particle in an electric field of wave packet: Low velocity and relativistic approach
,” Phys. Lett. A
376
, 3630
–3637
(2012
). 42.
D. F. M.
Oliveira
and E. D.
Leonel
, “Statistical and dynamical properties of a dissipative kicked rotator
,” Phys. A
413
, 498
–514
(2014
). 43.
E. N.
Lorenz
, “Compound windows of the Hénon-map
,” Phys. D
237
, 1689
–1704
(2008
). 44.
D. M.
Maranhao
, M. S.
Baptista
, J. C.
Sartorelli
, and I. L.
Caldas
, “Experimental observation of a complex periodic window
,” Phys. Rev. E
77
, 037202
(2008
).45.
R.
Stoop
, P.
Benner
, and Y.
Uwate
, “Real-world existence and origins of the spiral organization of shrimp-shaped domains
,” Phys. Rev. Lett.
105
, 074102
(2010
). 46.
R.
Stoop
, S.
Martignoli
, P.
Benner
, R. L.
Stoop
, and Y.
Uwate
, “Shrimps: Occurrence, scaling and relevance
,” Int. J. Bifurc. Chaos
22
, 1230032
(2012
). 47.
E. R.
Viana
, R. M.
Rubinger
, H. A.
Albuquerque
, A. G.
de Oliveira
, and G. M.
Ribeiro
, “High-resolution parameter space of an experimental chaotic circuit
,” Chaos
20
, 023110
(2010
). 48.
D. F. M.
Oliveira
and E. D.
Leonel
, “Parameter space for a dissipative Fermi–Ulam model
,” New J. Phys.
13
, 123012
(2011
). 49.
H. G.
Schuster
and W.
Just
, Deterministic Chaos: An Introduction
(John Wiley & Sons
, 2006
).50.
J.-P.
Eckmann
and D.
Ruelle
, “Ergodic theory of chaos and strange attractors
,” Rev. Mod. Phys.
57
, 617
(1985
). 51.
M. D. S.
Baptista
and I. L.
Caldas
, “The parameter space structure of the kicked logistic map and its stability
,” Int. J. Bifurc. Chaos
7
, 447
–457
(1997
). 52.
R. S.
Mackay
and C.
Tresser
, “Transition to topological chaos for circle maps
,” Phys. D
19
, 206
–237
(1986
). 53.
A.
Celestino
, C.
Manchein
, H. A.
Albuquerque
, and M. W.
Beims
, “Stable structures in parameter space and optimal ratchet transport
,” Commun. Nonlinear Sci. Numer. Simul.
19
, 139
–149
(2014
). © 2024 Author(s). Published under an exclusive license by AIP Publishing.
2024
Author(s)
You do not currently have access to this content.