This study examines the dynamical properties of the Ikeda map, with a focus on bifurcations and chaotic behavior. We investigate how variations in dissipation parameters influence the system, uncovering shrimp-shaped structures that represent intricate transitions between regular and chaotic dynamics. Key findings include the analysis of period-doubling bifurcations and the onset of chaos. We utilize Lyapunov exponents to distinguish between stable and chaotic regions. These insights contribute to a deeper understanding of nonlinear and chaotic dynamics in optical systems.

1.
E. N.
Lorenz
, “
Deterministic nonperiodic flow
,”
J. Atmos. Sci.
20
,
130
141
(
1963
).
2.
J. A.
Gallas
, “
Structure of the parameter space of the Hénon map
,”
Phys. Rev. Lett.
70
,
2714
(
1993
).
3.
R. M.
May
, “
Simple mathematical models with very complicated dynamics
,”
Nature
261
,
459
467
(
1976
).
4.
S. H.
Strogatz
,
Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering
(
CRC Press
,
2018
).
5.
J.
Guckenheimer
and
P.
Holmes
,
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
(
Springer Science & Business Media
,
2013
), Vol. 42.
6.
F.
Moon
and
P. J.
Holmes
, “
A magnetoelastic strange attractor
,”
J. Sound Vib.
65
,
275
296
(
1979
).
7.
S. O.
Kamphorst
and
S. P.
de Carvalho
, “
Bounded gain of energy on the breathing circle billiard
,”
Nonlinearity
12
,
1363
(
1999
).
8.
D. F. M.
Oliveira
and
E. D.
Leonel
, “
On the dynamical properties of an elliptical–oval billiard with static boundary
,”
Commun. Nonlinear Sci. Numer. Simul.
15
,
1092
1102
(
2010
).
9.
D. F. M.
Oliveira
and
M.
Robnik
, “
Scaling invariance in a time-dependent elliptical billiard
,”
Int. J. Bifurc. Chaos
22
,
1250207
(
2012
).
10.
L. D.
Pustyl’nikov
, “
Construction of periodic solutions in an infinite system of Fermi-Pasta-Ulam ordinary differential equations, stability, and KAM theory
,”
Russ. Math. Surv.
50
,
449
(
1995
).
11.
Y. G.
Sinai
, “
Dynamical systems with elastic reflections
,”
Russ. Math. Surv.
25
,
137
(
1970
).
12.
L. A.
Bunimovich
, “
On the ergodic properties of nowhere dispersing billiards
,”
Commun. Math. Phys.
65
,
295
312
(
1979
).
13.
M.
Robnik
, “
Classical dynamics of a family of billiards with analytic boundaries
,”
J. Phys. A: Math. Gen.
16
,
3971
(
1983
).
14.
D. F. M.
Oliveira
,
J.
Vollmer
, and
E. D.
Leonel
, “
Fermi acceleration and its suppression in a time-dependent Lorentz gas
,”
Phys. D
240
,
389
396
(
2011
).
15.
D. F. M.
Oliveira
and
E. D.
Leonel
, “
In-flight and collisional dissipation as a mechanism to suppress Fermi acceleration in a breathing Lorentz gas
,”
Chaos
22
,
026123
(
2012
).
16.
E. D.
Leonel
and
P.
McClintock
, “
A hybrid Fermi–Ulam-bouncer model
,”
J. Phys. A: Math. Gen.
38
,
823
(
2005
).
17.
D. F. M.
Oliveira
,
R. A.
Bizao
, and
E. D.
Leonel
, “Scaling properties of a hybrid Fermi-Ulam-bouncer model,”
Math. Probl. Eng.
2009
(1),
1–13
.
18.
D. F. M.
Oliveira
,
E. D.
Leonel
, and
M.
Robnik
, “
Boundary crisis and transient in a dissipative relativistic standard map
,”
Phys. Lett. A
375
,
3365
3369
(
2011
).
19.
D. F. M.
Oliveira
,
M. R.
Silva
, and
E. D.
Leonel
, “
A symmetry break in energy distribution and a biased random walk behavior causing unlimited diffusion in a two dimensional mapping
,”
Phys. A
436
,
909
915
(
2015
).
20.
E. D.
Leonel
,
M. V. C.
Galia
,
L. A.
Barreiro
, and
D. F. M.
Oliveira
, “
Thermodynamics of a time-dependent and dissipative oval billiard: A heat transfer and billiard approach
,”
Phys. Rev. E
94
,
062211
(
2016
).
21.
G.
Page
,
C.
Antoine
,
C. P.
Dettmann
, and
J.
Talbot
, “
The Iris billiard: Critical geometries for global chaos
,”
Chaos
30
,
123105
(
2020
).
22.
K.
Ikeda
, “
Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system
,”
Opt. Commun.
30
,
257
261
(
1979
).
23.
K.
Ikeda
,
H.
Daido
, and
O.
Akimoto
, “
Optical turbulence: Chaotic behavior of transmitted light from a ring cavity
,”
Phys. Rev. Lett.
45
,
709
(
1980
).
24.
S.
Watanabe
and
S. H.
Strogatz
, “
Constants of motion for superconducting Josephson arrays
,”
Phys. D
74
,
197
253
(
1994
).
25.
P. S.
Linsay
, “
Period doubling and chaotic behavior in a driven anharmonic oscillator
,”
Phys. Rev. Lett.
47
,
1349
(
1981
).
26.
D. F. M.
Oliveira
and
E. D.
Leonel
, “
The Feigenbaum’s delta for a high dissipative bouncing ball model
,”
Braz. J. Phys.
38
,
62
64
(
2008
).
27.
M. J.
Feigenbaum
, “
Quantitative universality for a class of nonlinear transformations
,”
J. Stat. Phys.
19
,
25
52
(
1978
).
28.
M. J.
Feigenbaum
, “
The universal metric properties of nonlinear transformations
,”
J. Stat. Phys.
21
,
669
706
(
1979
).
29.
M.
Hanias
,
Z.
Avgerinos
, and
G.
Tombras
, “
Period doubling, Feigenbaum constant and time series prediction in an experimental chaotic RLD circuit
,”
Chaos, Solitons Fractals
40
,
1050
1059
(
2009
).
30.
H.-K.
Chen
,
L.-J.
Sheu
,
L.-M.
Tam
, and
S.-K.
Lao
, “
A new finding of the existence of Feigenbaum’s constants in the fractional-order Chen–Lee system
,”
Nonlinear Dyn.
68
,
589
599
(
2012
).
31.
P.
Gaspard
,
R.
Kapral
, and
G.
Nicolis
, “
Bifurcation phenomena near homoclinic systems: A two-parameter analysis
,”
J. Stat. Phys.
35
,
697
727
(
1984
).
32.
J.
Rössler
,
M.
Kiwi
,
B.
Hess
, and
M.
Markus
, “
Modulated nonlinear processes and a novel mechanism to induce chaos
,”
Phys. Rev. A
39
,
5954
(
1989
).
33.
M.
Komuro
,
R.
Tokunaga
,
T.
Matsumoto
,
L.
Chua
, and
A.
Hotta
, “
Global bifurcation analysis of the double scroll circuit
,”
Int. J. Bifurc. Chaos
1
,
139
182
(
1991
).
34.
R.
Vitolo
,
P.
Glendinning
, and
J. A.
Gallas
, “
Global structure of periodicity hubs in Lyapunov phase diagrams of dissipative flows
,”
Phys. Rev. E
84
,
016216
(
2011
).
35.
J.
Gallas
, “
Structure of the parameter space of a ring cavity
,”
Appl. Phys. B: Lasers Opt.
60
,
S203
(
1995
).
36.
J. A.
Gallas
, “
Dissecting shrimps: Results for some one-dimensional physical models
,”
Phys. A
202
,
196
223
(
1994
).
37.
B. R.
Hunt
,
J. A.
Gallas
,
C.
Grebogi
,
J. A.
Yorke
, and
H.
Koçak
, “
Bifurcation rigidity
,”
Phys. D
129
,
35
56
(
1999
).
38.
C.
Bonatto
,
J. C.
Garreau
, and
J. A.
Gallas
, “
Self-similarities in the frequency-amplitude space of a loss-modulated CO 2 laser
,”
Phys. Rev. Lett.
95
,
143905
(
2005
).
39.
D. F. M.
Oliveira
,
M.
Robnik
, and
E. D.
Leonel
, “
Shrimp-shape domains in a dissipative kicked rotator
,”
Chaos
21
,
043122
(
2011
).
40.
D. F. M.
Oliveira
and
E. D.
Leonel
, “
Some dynamical properties of a classical dissipative bouncing ball model with two nonlinearities
,”
Phys. A
392
,
1762
1769
(
2013
).
41.
D. F. M.
Oliveira
and
E. D.
Leonel
, “
Dynamical properties for the problem of a particle in an electric field of wave packet: Low velocity and relativistic approach
,”
Phys. Lett. A
376
,
3630
3637
(
2012
).
42.
D. F. M.
Oliveira
and
E. D.
Leonel
, “
Statistical and dynamical properties of a dissipative kicked rotator
,”
Phys. A
413
,
498
514
(
2014
).
43.
E. N.
Lorenz
, “
Compound windows of the Hénon-map
,”
Phys. D
237
,
1689
1704
(
2008
).
44.
D. M.
Maranhao
,
M. S.
Baptista
,
J. C.
Sartorelli
, and
I. L.
Caldas
, “
Experimental observation of a complex periodic window
,”
Phys. Rev. E
77
,
037202
(
2008
).
45.
R.
Stoop
,
P.
Benner
, and
Y.
Uwate
, “
Real-world existence and origins of the spiral organization of shrimp-shaped domains
,”
Phys. Rev. Lett.
105
,
074102
(
2010
).
46.
R.
Stoop
,
S.
Martignoli
,
P.
Benner
,
R. L.
Stoop
, and
Y.
Uwate
, “
Shrimps: Occurrence, scaling and relevance
,”
Int. J. Bifurc. Chaos
22
,
1230032
(
2012
).
47.
E. R.
Viana
,
R. M.
Rubinger
,
H. A.
Albuquerque
,
A. G.
de Oliveira
, and
G. M.
Ribeiro
, “
High-resolution parameter space of an experimental chaotic circuit
,”
Chaos
20
,
023110
(
2010
).
48.
D. F. M.
Oliveira
and
E. D.
Leonel
, “
Parameter space for a dissipative Fermi–Ulam model
,”
New J. Phys.
13
,
123012
(
2011
).
49.
H. G.
Schuster
and
W.
Just
,
Deterministic Chaos: An Introduction
(
John Wiley & Sons
,
2006
).
50.
J.-P.
Eckmann
and
D.
Ruelle
, “
Ergodic theory of chaos and strange attractors
,”
Rev. Mod. Phys.
57
,
617
(
1985
).
51.
M. D. S.
Baptista
and
I. L.
Caldas
, “
The parameter space structure of the kicked logistic map and its stability
,”
Int. J. Bifurc. Chaos
7
,
447
457
(
1997
).
52.
R. S.
Mackay
and
C.
Tresser
, “
Transition to topological chaos for circle maps
,”
Phys. D
19
,
206
237
(
1986
).
53.
A.
Celestino
,
C.
Manchein
,
H. A.
Albuquerque
, and
M. W.
Beims
, “
Stable structures in parameter space and optimal ratchet transport
,”
Commun. Nonlinear Sci. Numer. Simul.
19
,
139
149
(
2014
).
You do not currently have access to this content.