The Labyrinthic map is a two-dimensional area-preserving map that features a robust transport barrier known as the shearless curve. In this study, we explore a dissipative version of this map, examining how dissipation affects the shearless curve and leads to the emergence of quasi-periodic or chaotic attractors, referred to as shearless attractors. We present a route to chaos of the shearless attractor known as the Curry–Yorke route. To investigate the multi-stability of the system, we employ basin entropy and boundary basin entropy analyses to characterize diverse scenarios. Additionally, we numerically investigate the dynamic periodic structures known as “shrimps” and “Arnold tongues” by varying the parameters of the system.
REFERENCES
1.
2.
A. J.
Lichtenberg
and M. A.
Lieberman
, Regular and Chaotic Dynamics
, 2nd ed. (Springer Verlag
, New York
, 1992
).3.
J. P.
Van der Weele
, T. P.
Valkering
, H.
Capel
, and T.
Post
, “The birth of twin Poincaré–Birkhoff chains near
resonance
,” Phys. A
153
, 283
(1988
). 4.
D.
del-Castillo-Negrete
and P. J.
Morrison
, “Chaotic transport by Rossby waves in shear flow
,” Phys. Fluids
5
, 948
(1993
). 5.
G. C.
Grime
, M.
Roberto
, R. L.
Viana
, Y.
Elskens
, and I. L.
Caldas
, “Biquadratic nontwist map: A model for shearless bifurcations
,” Chaos, Solitons Fractals
169
, 113231
(2023
). 6.
G.
Corso
and F. B.
Rizzato
, “Manifold reconnection in chaotic regimes
,” Phys. Rev. E
58
, 8013
(1998
). 7.
D.
del-Castillo-Negrete
, J. M.
Greene
, and P. J.
Morrison
, “Area preserving nontwist maps: Periodic orbits and transition to chaos
,” Phys. D
91
, 1
(1996
). 8.
R.
Egydio de Carvalho
and A. M.
Ozorio de Almeida
, “Integrable approximation to the overlap of resonances
,” Phys. Lett. A
162
(6), 457–463
(1992
).9.
A.
Wurm
, A.
Apte
, and P. J.
Morrison
, “On reconnection phenomena in the standard nontwist map
,” Braz. J. Phys.
34
, 1700
(2004
). 10.
D.
del Castillo-Negrete
, “Chaotic transport in zonal flows in analogous geophysical and plasma systems
,” Phys. Plasmas
7
(5), 1702–1711
(2000
).11.
P. J.
Morrison
, “Magnetic field lines, Hamiltonian dynamics, and nontwist systems
,” Phys. Plasmas
7
, 2279
(2000
). 12.
L. A.
Osorio-Quiroga
, G. C.
Grime
, M.
Roberto
, R. L.
Viana
, Y.
Elskens
, and I. L.
Caldas
, “E
B drift particle transport in tokamaks
,” Braz. J. Phys.
53
, 96
(2023
). 13.
R. S.
MacKay
, J. D.
Meiss
, and I. C.
Percival
, “Transport in Hamiltonian systems
,” Phys. D
13
, 55
(1984
). 14.
L. F. B.
de Souza
, R.
Egydio de Carvalho
, and I. L.
Caldas
, “Transport barriers for two modes drift wave map
,” Phys. Lett. A
444
, 128237
(2022
).15.
G. A.
Oda
and I. L.
Caldas
, “Dimerized island chains in tokamaks
,” Chaos, Solitons Fractals
5
, 15
(1995
). 16.
A.
Wurm
, A.
Apte
, K.
Fuchss
, and P. J.
Morrison
, “Meanders and reconnection–collision sequences in the standard nontwist map
,” Chaos
15
, 023108
(2005
). 17.
S.
Shinohara
and Y.
Aizawa
, “Indicators of reconnection processes and transition to global chaos in nontwist maps
,” Prog. Theor. Phys.
100
, 219
(1998
). 18.
J. D.
Szezech
, I. L.
Caldas
, S. R.
Lopes
, R. L.
Viana
, and P. J.
Morrison
, “Transport properties in nontwist area-preserving maps
,” Chaos
19
, 043108
(2009
). 19.
C. G. L.
Martins
, R.
Egydio de Carvalho
, I. L.
Caldas
, and M.
Roberto
, “Labyrinthic standard non-twist map
,” J. Phys. A
44
, 045102
(2010
). 20.
M.
Mugnaine
, A. M.
Batista
, I. L.
Caldas
, J. D.
Szezech
, and R. L.
Viana
, “Ratchet current in nontwist Hamiltonian systems
,” Chaos
30
, 093141
(2020
). 21.
A.
Wurm
and K.
Martini
, “Breakup of inverse golden mean shearless tori in the two-frequency standard nontwist map
,” Phys. Lett. A
377
, 622
–627
(2013
). 22.
R.
Egydio de Carvalho
and C. V.
Abud
, “Robust attractor of non-twist systems
,” Phys. A: Stat. Mech. Appl.
440
, 42
–48
(2015
).23.
M.
Mugnaine
, A. M.
Batista
, I. L.
Caldas
, J. D.
Szezech
, R.
Egydio de Carvalho
, and R. L.
Viana
, “Curry–Yorke route to shearless attractors and coexistence of attractors in dissipative nontwist systems
,” Chaos
31
, 023125
(2021
). 24.
L. K.
Kato
and R.
Egydio de Carvalho
, “Transport barriers with shearless attractors
,” Phys. Rev. E
99
, 032218
(2019
). 25.
C.
Grebogi
, E.
Ott
, and J. A.
Yorke
, “Chaotic attractors in crisis
,” Phys. Rev. Lett.
48
, 1507
–1510
(1982
). 26.
C.
Grebogi
, E.
Ott
, and J. A.
Yorke
, “Crises, sudden changes in chaotic attractors, and transient chaos
,” Phys. D
7
, 181
–200
(1983
). 27.
V. N.
Chizhevsky
, R.
Vilaseca
, and R.
Corbalán
, “Amplification of near-resonant signals via stochastic resonance in a chaotic CO2 laser
,” Phys. Rev. E
61
, 6500
–6505
(2000
). 28.
W. L.
Ditto
, S.
Rauseo
, R.
Cawley
, C.
Grebogi
, G.-H.
Hsu
, E.
Kostelich
, E.
Ott
, H. T.
Savage
, R.
Segnan
, M. L.
Spano
, and J. A.
Yorke
, “Experimental observation of crisis-induced intermittency and its critical exponent
,” Phys. Rev. Lett.
63
, 923
–926
(1989
). 29.
A. S.
de Paula
, M. A.
Savi
, and F. H. I.
Pereira-Pinto
, “Chaos and transient chaos in an experimental nonlinear pendulum
,” J. Sound Vibr.
294
, 585
–595
(2006
). 30.
R. S.
Baroni
and R.
Egydio de Carvalho
, “Destruction and resurgence of the quasiperiodic shearless attractor
,” Phys. Rev. E
104
, 014207
(2021
). 31.
T. N.
Nogueira
, F. A. C.
Pereira
, J.
Procopio
, and J. C.
Sartorelli
, “Dripping faucet dynamics in a nonuniform electric field
,” Chaos
28
, 113101
(2018
). 32.
J. A. C.
Gallas
, “Dissecting shrimps: Results for some one-dimensional physical models
,” Phys. A
202
, 196
–223
(1994
). 33.
E. L.
Brugnago
and P. C.
Rech
, “Chaos suppression in a sine square map through nonlinear coupling
,” Chin. Phys. Lett.
28
, 110506
(2011
). 34.
J. A.
de Oliveira
, L. T.
Montero
, D. R.
da Costa
, J. A.
Méndez-Bermúdez
, R. O.
Medrano-T
, and E. D.
Leonel
, “An investigation of the parameter space for a family of dissipative mappings
,” Chaos
29
, 053114
(2019
). 35.
C.
Bonatto
, J. C.
Garreau
, and J. A.
Gallas
, “Self-similarities in the frequency-amplitude space of a loss-modulated CO2 laser
,” Phys. Rev. Lett.
95
, 143905
(2005
). 36.
J. A. C.
Gallas
, “Structure of the parameter space of the Hénon map
,” Phys. Rev. Lett.
70
, 2714
(1993
). 37.
S.
Fraser
and R.
Kapral
, “Analysis of flow hysteresis by a one-dimensional map
,” Phys. Rev. A
25
, 3223
(1982
). 38.
S.
Baptista
and I. L.
Caldas
, “Dynamics of the kicked logistic map
,” Chaos, Solitons Fractals
7
, 325
–336
(1996
). 39.
D. M.
Maranhão
, M. S.
Baptista
, J. C.
Sartorelli
, and I. L.
Caldas
, “Experimental observation of a complex periodic window
,” Phys. Rev. E
77
(3), 037202
(2008
).40.
F. F. G.
de Sousa
, R. M.
Rubinger
, J. C.
Sartorelli
, H. A.
Albuquerque
, and M. S.
Baptista
, “Parameter space of experimental chaotic circuits with high-precision control parameters
,” Chaos
26
, 083107
(2016
). 41.
U.
Feudel
, C.
Grebogi
, B. R.
Hunt
, and J. A.
Yorke
, “Map with more than 100 coexisting low-period periodic attractors
,” Phys. Rev. E
54
, 71
(1996
). 42.
U.
Feudel
and C.
Grebogi
, “Multistability and the control of complexity
,” Chaos
7
, 597
–604
(1997
). 43.
U.
Feudel
, C.
Grebogi
, L.
Poon
, and J. A.
Yorke
, “Dynamical properties of a simple mechanical system with a large number of coexisting periodic attractors
,” Chaos, Solitons Fractals
9
, 171
–180
(1998
). 44.
A.
Wolf
, J. B.
Swift
, H. L.
Swinney
, and J. A.
Vastano
, “Determining Lyapunov exponents from a time series
,” Phys. D
16
, 285
(1985
). 45.
V.
Arnold
, “Cardiac arrhythmias and circle mappings
,” Chaos
1
, 20
–24
(1991
). 46.
J.
Bélair
and L.
Glass
, “Universality and self-similarity in the bifurcations of circle maps
,” Phys. D: Nonlin. Phenom.
16
(2), 143
–154
(1985
).47.
R. S.
Mackay
and C.
Tresser
, “Some flesh on the skeleton: The bifurcation structure of bimodal maps
,” Phys. D
27
, 412
–422
(1987
). 48.
A.
Daza
, A.
Wagemakers
, B.
Georgeot
, D.
Guéry-Odelin
, and M. A. F.
Sanjuán
, “Basin entropy: A new tool to analyze uncertainty in dynamical systems
,” Sci. Rep.
6
, 31416
(2016
). © 2024 Author(s). Published under an exclusive license by AIP Publishing.
2024
Author(s)
You do not currently have access to this content.