In this work, we study the effectiveness of employing archetypal aperiodic sequencing—namely, Fibonacci, Thue–Morse, and Rudin–Shapiro—on the Parrondian effect. From a capital gain perspective, our results show that these series do yield a Parrondo’s paradox with the Thue–Morse based strategy outperforming not only the other two aperiodic strategies but benchmark Parrondian games with random and periodical ( A A B B A A B B ) switching as well. The least performing of the three aperiodic strategies is the Rudin–Shapiro. To elucidate the underlying causes of these results, we analyze the cross correlation between the capital generated by the switching protocols and that of the isolated losing games. This analysis reveals that a strong anticorrelation with both isolated games is typically required to achieve a robust manifestation of Parrondo’s effect. We also study the influence of the sequencing on the capital using the lacunarity and persistence measures. In general, we observe that the switching protocols tend to become less performing in terms of the capital as one increases the persistence and, thus, approaches the features of an isolated losing game. For the (log-)lacunarity, a property related to heterogeneity, we notice that for small persistence (less than 0.5), the performance increases with the lacunarity with a maximum around 0.4. In respect of this, our work shows that the optimization of a switching protocol is strongly dependent on a fine-tuning between persistence and heterogeneity.

1
These counter-intuitive phenomena are often called paradoxes. In this case, the term paradox is “veridical,” i.e., one whose “proposition” or conclusion is in fact true despite its air of absurdity and not a “falsidical” paradox.
2
W. V. O.
Quine
, “The ways of paradox,” in
The Ways of Paradox, and Other Essays
, edited by W. V. O. Quine (Random House, New York, 1976), p. 3.
3
R.
Feynman
,
R.
Leighton
, and
M.
Sands
,
The Feynman Lectures on Physics
(
Adsison Wesley
,
Reading
,
1963
), Vol. 1, p. 46-1.
4
J. M. R.
Parrondo
and
P.
Español
, “
Criticism of Feynman’s analysis of the ratchet as an engine
,”
Am. J. Phys.
64
,
1125
1130
(
1996
).
5
J.
Prost
,
J.-F.
Chauwin
,
L.
Peliti
, and
A.
Ajdari
, “
Asymmetric pumping of particles
,”
Phys. Rev. Lett.
72
,
2652
2655
(
1994
).
6
J.
Parrondo
, “How to cheat a bad mathematician,” in EEC HCM Network on Complexity and Chaos (ERBCHRX-CT940546), ISI, Torino, Italy (1996).
7
D.
Abbott
, “
Overview: Unsolved problems of noise and fluctuations
,”
Chaos
11
,
526
538
(
2001
).
8
H. V.
Westerhoff
,
T. Y.
Tsong
,
P.
Chock
,
Y.-D.
Chen
, and
R.
Astumian
, “
How enzymes can capture and transmit free energy from an oscillating electric field
,”
Proc. Natl. Acad. Sci. U. S. A.
83
,
4734
(
1986
).
9
E.
Key
, “
Computable examples of the maximal Lyapunov exponent
,”
Probab. Theory Relat. Fields
75
,
97
(
1987
).
10
A.
Rosato
,
K. J.
Strandburg
,
F.
Prinz
, and
R. H.
Swendsen
, “
Why the Brazil nuts are on top: Size segregation of particulate matter by shaking
,”
Phys. Rev. Lett.
58
,
1038
1040
(
1987
).
11
R.
Pinsky
and
M.
Scheutzow
, “Some remarks and examples concerning the transience and recurrence of random diffusions,” in Annales de l’IHP Probabilités et Statistiques (Gauthier-Villars, 1992), Vol. 28, pp. 519–536.
12
A.
Ajdari
and
J.
Prost
, “
Drift induced by a spatially periodic potential of low symmetry-pulsed dielectrophoresis
,”
C. R. Acad. Sci. Ser. II
315
,
1635
(
1992
).
13
S.
Maslov
and
Y.-C.
Zhang
, “
Optimal investment strategy for risky assets
,”
Int. J. Theor. Appl. Finance
1
,
377
(
1998
).
14
D. G.
Luenberger
,
Investment Science
(
Oxford University Press
,
Oxford
,
1998
).
15
V. A. A.
Jansen
and
J.
Yoshimura
, “
Populations can persist in an environment consisting of sink habitats only
,”
Proc. Natl. Acad. Sci. U. S. A.
95
,
3696
3698
(
1998
).
16
M.
Bucolo
,
A.
Buscarino
,
C.
Famoso
,
L.
Fortuna
, and
S.
Gagliano
, “
Imperfections in integrated devices allow the emergence of unexpected strange attractors in electronic circuits
,”
IEEE Access
9
,
29573
(
2021
).
17
D.
Heath
,
D.
Kinderlehrer
, and
M.
Kowalczyk
, “
Discrete and continuous ratchets: From coin toss to molecular motor
,”
Discrete Contin. Dyn. Syst. Ser. B
2
,
153
168
(
2002
).
18
J. M.
Koh
and
K. H.
Cheong
, “
Automated electron-optical system optimization through switching Levenberg–Marquardt algorithms
,”
J. Electron Spectrosc. Relat. Phenom.
227
,
31
(
2018
).
19
D. C.
Osipovitch
,
C.
Barratt
, and
P. M.
Schwartz
, “
Systems chemistry and Parrondo’s paradox: Computational models of thermal cycling
,”
New J. Chem.
33
,
2022
(
2009
).
20
K. H.
Cheong
,
Z. X.
Tan
,
N.-G.
Xie
, and
M. C.
Jones
, “
A paradoxical evolutionary mechanism in stochastically switching environments
,”
Sci. Rep.
6
,
34889
(
2016
).
21
K. H.
Cheong
,
J. M.
Koh
, and
M. C.
Jones
, “
Paradoxical survival: Examining the Parrondo effect across biology
,”
BioEssays
41
,
1900027
(
2019
).
22
T.
Wen
and
K. H.
Cheong
, “
Parrondo’s paradox reveals counterintuitive wins in biology and decision making in society
,”
Phys. Life Rev.
51
,
33–59
(
2024
).
23
P. C.
Rech
,
M. W.
Beims
, and
J. A.
Gallas
, “
Generation of quasiperiodic oscillations in pairs of coupled maps
,”
Chaos Solitons Fractals
33
,
1394
1410
(
2007
).
24
P. G.
Lind
,
J. A.
Corte-Real
, and
J. A.
Gallas
, “
The distribution of periodic and aperiodic pattern evolutions in rings of diffusively coupled maps
,”
Int. J. Bifurcation Chaos
11
,
2647
2661
(
2001
).
25
P. A.
Lynn
, “Aperiodic signals,” in An Introduction to the Analysis and Processing of Signals (Macmillan Education, London, 1989), pp. 30–56.
26
D.
Abbott
, “Developments in Parrondo’s paradox,” in Applications of Nonlinear Dynamics: Model and Design of Complex Systems, edited by V. In, P. Longhini, and A. Palacios (Springer, Berlin, 2009), pp. 307–321.
27
D.
Abbott
, “
Asymmetry and disorder: A decade of Parrondo’s paradox
,”
Fluct. Noise Lett.
9
,
129
156
(
2010
).
28
G. P.
Harmer
and
D.
Abbott
, “
Losing strategies can win by Parrondo’s paradox
,”
Nature
402
,
864
(
1999
).
29
G. P.
Harmer
and
D.
Abbott
, “
A review of Parrondo’s paradox
,”
Fluct. Noise Lett.
2
,
R71
R107
(
2002
).
30
J.
Parrondo
and
L.
Dínis
, “
Brownian motion and gambling: From ratchets to paradoxical games
,”
Contemp. Phys.
45
,
147
157
(
2004
).
31
D. A.
Meyer
and
H.
Blumer
, “
Quantum Parrondo games: Biased and unbiased
,”
Fluct. Noise Lett.
2
,
L257
L262
(
2002
).
32
A. P.
Flitney
,
D.
Abbott
, and
N. F.
Johnson
, “
Quantum walks with history dependence
,”
J. Phys. A: Math. Gen.
37
,
7581
(
2004
).
33
C.
Chandrashekar
and
S.
Banerjee
, “
Parrondo’s game using a discrete-time quantum walk
,”
Phys. Lett. A
375
,
1553
1558
(
2011
).
34
A. P.
Flitney
, “Quantum Parrondo’s games using quantum walks,” arXiv:1209.2252 (2012).
35
M. M.
Li
,
Y.-S.
Zhang
, and
G.-C.
Guo
, “
Quantum Parrondo’s games constructed by quantum random walks
,”
Fluct. Noise Lett.
12
,
1350024
(
2013
).
36
J.
Rajendran
and
C.
Benjamin
, “
Playing a true Parrondo’s game with a three-state coin on a quantum walk
,”
Europhys. Lett.
122
,
40004
(
2018
).
37
M. A.
Pires
and
S. M.
Duarte Queirós
, “
Parrondo’s paradox in quantum walks with time-dependent coin operators
,”
Phys. Rev. E
102
,
042124
(
2020
).
38
J. J.
Ximenes
,
M. A.
Pires
, and
J. M.
Villas-Bôas
, “
Parrondo’s effect in continuous-time quantum walks
,”
Phys. Rev. A
109
,
032417
(
2024
).
39
J. W.
Lai
and
K. H.
Cheong
, “
Parrondo’s paradox from classical to quantum: A review
,”
Nonlinear Dyn.
100
,
849
(
2020
).
40
J.-P.
Capp
,
A. M.
Nedelcu
,
A. M.
Dujon
,
B.
Roche
,
F.
Catania
,
B.
Ujvari
,
C.
Alix-Panabières
, and
F.
Thomas
, “
Does cancer biology rely on Parrondo’s principles?
,”
Cancers
13
,
2197
(
2021
).
41
X.
Molinero Albareda
and
C.
Mégnien
, “Markov chains applied to Parrondo’s paradox: The coin tossing problem,” in 12th International Conference on Advanced Information Technologies and Applications (ICAITA 2023): March 25 26, 2023, Sydney, Australia: Proceedings (CS & IT Conference Proceedings, 2023), pp. 25–44.
42
E.
Gao
, “
Analysis of the Parrondo paradox and applications
,”
Highlights Sci. Eng. Technol.
88
,
383
390
(
2024
).
43
E.
Maciá
, “
Aperiodic crystals in biology
,”
J. Phys.: Condens. Matter
34
,
123001
(
2022
).
44
E. M.
Barber
,
Aperiodic Structures in Condensed Matter: Fundamentals and Applications
(
CRC Press
,
2008
).
45
W.
Steurer
and
D.
Sutter-Widmer
, “
Photonic and phononic quasicrystals
,”
J. Phys. D: Appl. Phys.
40
,
R229
(
2007
).
46
L.
Dal Negro
and
S. V.
Boriskina
, “
Deterministic aperiodic nanostructures for photonics and plasmonics applications
,”
Laser Photonics Rev.
6
,
178
218
(
2012
).
47
M. A.
Pires
,
N.
Crokidakis
, and
S. M.
Duarte Queirós
, “
Randomness in ecology: The role of complexity on the Allee effect
,”
Physica A
589
,
126548
(
2022
).
48
M. A.
Pires
and
S. M. D.
Queirós
, “
Quantum walks with sequential aperiodic jumps
,”
Phys. Rev. E
102
,
012104
(
2020
).
49
S. T.
Pinho
,
V.
de Meneses
,
M.
Muniz
, and
T. P.
Lobao
, “
An algorithm for periodicity and almost periodicity of uniform substitution sequences and its implications on aperiodic spin models
,”
Comput. Phys. Commun.
241
,
48
55
(
2019
).
50
R.
Andrade
and
S.
Pinho
, “
Break of universality for an Ising model with aperiodic Rudin-Shapiro interactions
,”
Eur. Phys. J. B
34
,
343
350
(
2003
).
51
H.
Tran-Ngoc
,
T.
Le-Xuan
,
S.
Khatir
,
G.
De Roeck
,
T.
Bui-Tien
, and
M. A.
Wahab
, “
A promising approach using Fibonacci sequence-based optimization algorithms and advanced computing
,”
Sci. Rep.
13
,
3405
(
2023
).
52
J.-P.
Allouche
and
J.
Shallit
, “The ubiquitous prouhet-thue-morse sequence,” in Sequences and Their Applications, edited by C. Ding, T. Helleseth, and H. Niederreiter (Springer, London, 1999), p. 1.
53
A.
Jagannathan
, “
The Fibonacci quasicrystal: Case study of hidden dimensions and multifractality
,”
Rev. Mod. Phys.
93
,
045001
(
2021
).
54
M.
Baake
,
F.
Gähler
, and
J.
Mazáč
, “
On the fibonacci tiling and its modern ramifications
,”
Isr. J. Chem.
,
e202300155
(
2024
).
55
J.-M.
Luck
, “
Parrondo games as disordered systems
,”
Eur. Phys. J. B
92
,
1
17
(
2019
).
56
P.
Arena
,
S.
Fazzino
,
L.
Fortuna
, and
P.
Maniscalco
, “
Game theory and non-linear dynamics: The Parrondo paradox case study
,”
Chaos Solitons Fractals
17
,
545
(
2003
).
57
T. W.
Tang
,
A.
Allison
, and
D.
Abbott
, “
Investigation of chaotic switching strategies in Parrondo’s games
,”
Fluct. Noise Lett.
4
,
L585
(
2004
).
58
The same occurs for the canonical quintessential periodical Parrondo’s game.27
59
For the sake of simplicity, when we mention the anti/cross correlation between strategies and games it must be read as the anti/cross correlation between the capital of the switching protocol and that of each isolated game.
60
O. A.
Rosso
,
H. A.
Larrondo
,
M. T.
Martin
,
A.
Plastino
, and
M. A.
Fuentes
, “
Distinguishing noise from chaos
,”
Phys. Rev. Lett.
99
,
154102
(
2007
).
61
B. B.
Mandelbrot
, “Measures of fractal lacunarity: Minkowski content and alternatives,” in Fractal Geometry and Stochastics (Springer, 1995), pp. 15–42.
62
R. E.
Plotnick
,
R. H.
Gardner
,
W. W.
Hargrove
,
K.
Prestegaard
, and
M.
Perlmutter
, “
Lacunarity analysis: A general technique for the analysis of spatial patterns
,”
Phys. Rev. E
53
,
5461
5468
(
1996
).
63
C.
Allain
and
M.
Cloitre
, “
Characterizing the lacunarity of random and deterministic fractal sets
,”
Phys. Rev. A
44
,
3552
3558
(
1991
).
64
E. P.
Pinto
,
M. A.
Pires
,
R. S.
Matos
,
R. R.
Zamora
,
R. P.
Menezes
,
R. S.
Araújo
, and
T. M.
de Souza
, “
Lacunarity exponent and Moran index: A complementary methodology to analyze AFM images and its application to chitosan films
,”
Physica A
581
,
126192
(
2021
).
You do not currently have access to this content.