Agricultural crops are vital for human survival, forming the backbone of global food supply. However, the rising atmospheric carbon dioxide ( CO 2) level and the increasing temperature relative to the pre-industrial level are poised to impact the yields of essential staple food crops significantly. In this research, we propose and analyze a nonlinear mathematical model to investigate the effects of elevated CO 2 and temperature on crop yield. Our model assumes that rising CO 2 levels elevate the global average temperature, and the surface temperature initially boosts the growth rate of crops until a threshold is reached, after which the growth rate declines. We also incorporate seasonal variations into the model and perform a comprehensive analytical and numerical analysis of both the autonomous and associated nonautonomous systems. Our findings reveal a critical threshold for anthropogenic CO 2 emissions, beyond which the crop yield starts to decrease. Notably, crops with high-temperature tolerance demonstrate higher yields even under elevated CO 2 conditions, suggesting a viable strategy for mitigating climate change impacts: developing or utilizing crop varieties with enhanced temperature tolerance. Moreover, our analysis of the nonautonomous system uncovers periodic solutions when the corresponding autonomous system is stable. The nonautonomous system also exhibits complex dynamics, including higher-period oscillations and chaos, when the autonomous system undergoes limit-cycle oscillations. This study provides valuable insights into the interplay between CO 2 level, global average surface temperature, and crop yield, offering potential strategies for safeguarding agricultural productivity in the face of climate change.

1.
C.
Le Mouel
and
A.
Forslund
, “
How can we feed the world in 2050? A review of the responses from global scenario studies
,”
Eur. Rev. Agric. Econ.
44
(
4
),
541
591
(
2017
).
2.
IPCC
, “
Summary for policymakers
,” in
Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change
, edited by Core Writing Team, H. Lee, and J. Romero (
IPCC
,
Geneva
,
2023
), pp.
1
34
.
3.
C.
Zhao
,
B.
Liu
,
S.
Piao
,
X.
Wang
,
D. B.
Lobell
,
Y.
Huang
,
M.
Huang
,
Y.
Yao
,
S.
Bassu
,
P.
Ciais
, and
J. L.
Durand
, “
Temperature increase reduces global yields of major crops in four independent estimates
,”
Proc. Natl. Acad. Sci. U.S.A.
114
(
35
),
9326
9331
(
2017
).
4.
I.
Cohen
,
S. I.
Zandalinas
,
C.
Huck
,
F. B.
Fritschi
, and
R.
Mittler
, “
Meta-analysis of drought and heat stress combination impact on crop yield and yield components
,”
Physiol. Plantarum
171
,
66
76
(
2021
).
5.
S.
Irwin
and
D.
Good
, “
How bad was the 2012 corn and soybean growing season?
,”
Farmdoc Daily
192
,
2
(
2012
).
6.
D.
Beillouin
,
B.
Schauberger
,
A.
Bastos
,
P.
Ciais
, and
D.
Makowski
, “
Impact of extreme weather conditions on European crop production in 2018
,”
Philos. Trans. R. Soc. Lond. B: Biol. Sci.
375
,
20190510
(
2020
).
7.
D. B.
Lobell
and
S. M.
Gourdji
, “
The influence of climate change on global crop productivity
,”
Plant Physiol.
160
(
4
),
1686
1697
(
2012
).
8.
S.
Moghim
and
B.
Heidariask
, “
A novel method for adjusting cropping patterns to climate change
,”
J. Arid Environ.
214
,
104979
(
2023
).
9.
E. A.
Ainsworth
and
D. R.
Ort
, “
How do we improve crop production in a warming world?
,”
Plant Physiol.
154
(
2
),
526
530
(
2010
).
10.
E. E.
Rezaei
,
H.
Webber
,
S.
Asseng
,
K.
Boote
,
J. L.
Durand
,
F.
Ewert
,
P.
Martre
, and
D. S.
MacCarthy
, “
Climate change impacts on crop yields
,”
Nat. Rev. Earth Environ.
4
,
831
846
(
2023
).
11.
A.
Ortiz-Bobea
,
T. R.
Ault
,
C. M.
Carrillo
,
R. G.
Chambers
, and
D. B.
Lobell
, “
Anthropogenic climate change has slowed global agricultural productivity growth
,”
Nat. Clim. Change
11
,
306
312
(
2021
).
12.
IPCC
, “Summary for policymakers,” in Global Warming of 1.5  °C. An IPCC Special Report on the Impacts of Global Warming of 1.5  °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, edited by V. Masson-Delmotte, P. Zhai, H.-O. Portner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Pean, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (Cambridge University Press, Cambridge, UK and New York, NY, USA, 2018), see www.ipcc.ch/sr15/chapter/spm.
13.
United Nations Environment Programme
, Emission Gap Report 2019 (UNEP, Nairobi), see http://www.unenvironment.org/emissionsgap.
14.
A. K.
Misra
and
A.
Jha
, “
Modeling the effect of population pressure on the dynamics of carbon dioxide gas
,”
J. Appl. Math. Comput.
67
(
1
),
623
640
(
2021
).
15.
S.
Sundar
,
A. K.
Mishra
,
R.
Naresh
, and
J. B.
Shukla
, “
Modeling the impact of population density on carbon dioxide emission and its control: Effects of greenbelt plantation and seaweed cultivation
,”
Model. Earth Syst. Environ.
5
,
833
841
(
2019
).
16.
P.
Panja
, “
Deforestation, carbon dioxide increase in the atmosphere and global warming: A modelling study
,”
Int. J. Model. Simul.
41
(
3
),
209
219
(
2021
).
17.
M.
Verma
and
A. K.
Misra
, “
Effects of elevated carbon dioxide and temperature on crop yield: A modeling study
,”
J. Appl. Math. Comput.
58
,
503
526
(
2018
).
18.
W.
Schlenker
and
M. J.
Roberts
, “
Nonlinear temperature effects indicate severe damages to US crop yields under climate change
,”
Proc. Natl. Acad. Sci. U.S.A.
106
(
37
),
15594
15598
(
2009
).
19.
A.
Tandon
and
P. R.
Verma
, “
Human population induced urban developments and their effects on temperature rise: A nonlinear mathematical model
,”
Ecol. Complex.
47
,
100947
(
2021
).
20.
J. B.
Shukla
,
M. S.
Arora
,
M.
Verma
,
A. K.
Misra
, and
Y.
Takeuchi
, “
The impact of sea level rise due to global warming on the coastal population dynamics: A modeling study
,”
Earth Syst. Environ.
5
(
4
),
909
926
(
2021
).
21.
A.
Rehman
,
H.
Ma
,
M.
Ahmad
,
I.
Ozturk
, and
M. Z.
Chishti
, “
How do climatic change, cereal crops and livestock production interact with carbon emissions? Updated evidence from China
,”
Environ. Sci. Pollut. Res.
28
,
30702
30713
(
2021
).
22.
A. V. A.
Haris
,
S.
Biswas
,
V.
Chhabra
,
R.
Elanchezhian
, and
B. P.
Bhatt
, “
Impact of climate change on wheat and winter maize over a sub-humid climatic environment
,”
Curr. Sci.
104
(
2
),
206
214
(
2013
), available at: https://www.jstor.org/stable/24089386
23.
P.
Stone
, “The effects of heat stress on cereal yield and quality,” in Crop Responses and Adaptations to Temperature Stress, edited by A. S. Basra (Food Products Press, Binghamton, NY, 2011), pp. 243–291.
24.
S. J.
Crafts-Brandner
and
M. E.
Salvucci
, “
Sensitivity of photosynthesis in a C4 plant, maize, to heat stress
,”
Plant Physiol.
129
,
1773
1780
(
2002
).
25.
J. D.
Ray
,
R. W.
Gesch
,
T. R.
Sinclair
, and
L.
Hartwell Allen
, “
The effect of vapor pressure deficit on maize transpiration response to a drying soil
,”
Plant Soil
239
,
113
121
(
2002
).
26.
E. I.
Teixeira
,
G.
Fischer
,
H.
Van Velthuizen
,
C.
Walter
, and
F.
Ewert
, “
Global hot-spots of heat stress on agricultural crops due to climate change
,”
Agric. For. Meteorol.
170
,
206
215
(
2013
).
27.
L. H.
Ziska
,
D. M.
Blumenthal
,
G. B.
Runion
,
E. R.
Hunt
, and
H.
Diaz-Soltero
, “
Invasive species and climate change: An agronomic perspective
,”
Clim. Change
105
,
13
42
(
2011
).
28.
T. E.
Wong
,
Y.
Cui
,
D. L.
Royer
, and
K.
Keller
, “
A tighter constraint on Earth-system sensitivity from long-term temperature and carbon-cycle observations
,”
Nat. Commun.
12
(
1
),
3173
(
2021
).
29.
S.
Roy
,
N.
Sk
, and
P. K.
Tiwari
, “
Bifurcation analysis of autonomous and nonautonomous modified Leslie-Gower models
,”
Chaos
34
(
2
),
023131
(
2024
).
30.
A.
Mandal
,
P. K.
Tiwari
,
S.
Samanta
,
E.
Venturino
, and
S.
Pal
, “
A nonautonomous model for the effect of environmental toxins on plankton dynamics
,”
Nonlinear Dyn.
99
,
3373
3405
(
2020
).
31.
B.
Mondal
,
S.
Roy
,
U.
Ghosh
, and
P. K.
Tiwari
, “
A systematic study of autonomous and nonautonomous predator-prey models for the combined effects of fear, refuge, cooperation and harvesting
,”
Eur. Phys. J. Plus
137
(
6
),
724
(
2022
).
32.
A. K.
Misra
and
A.
Jha
, “
Modeling the role of renewable energy to mitigate the atmospheric level of carbon dioxide along with sustainable development
,”
Chaos
33
(
12
),
123116
(
2023
).
33.
R. A.
Warrick
, “
Carbon dioxide, climate change and agriculture
,”
Geogr. J.
154
,
221
233
(
1988
).
34.
IPCC
, “Climate change 2013: The physical science basis,” in Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley (Cambridge University Press, Cambridge, 2013), p. 1535, see https://www.ipcc.ch/report/ar5/wg1/.
35.
Y.
Chen
,
B.
Li
,
Z.
Li
, and
X.
Shi
, “
Quantitatively evaluating the effects of CO 2 emission on temperature rise
,”
Quat. Int.
336
,
171
175
(
2014
).
36.
E. H.
Roberts
and
R. J.
Summerfield
, “Measurement and prediction of flowering in annual crops,” in Manipulation of Flowering, edited by J. G. Atherton (Butterworths, London, 1987).
37.
C. M.
Donald
, “
Competition among crop and pasture plants
,”
Adv. Agron.
15
,
1
118
(
1963
).
38.
J. K.
Hale
,
Ordinary Differential Equations
(
Wiley-Interscience
,
New York
,
1969
).
39.
H. I.
Freedman
and
J. W. H.
So
, “
Global stability and persistence of simple food chains
,”
Math. Biosci.
76
(
1
),
69
86
(
1985
).
40.
J.
Guckenheimer
and
P.
Holmes
,
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
(
Springer Science & Business Media
,
2013
), Vol. 42.
41.
A. K.
Misra
and
A.
Yadav
, “
Managing the use of insecticides in agricultural fields: A modeling study
,”
Int. J. Bifurcation Chaos
33
(
8
),
2350095
(
2023
).
42.
A. K.
Misra
and
A.
Yadav
, “
Modeling the effects of insecticides on crop yield in the presence of insect population
,”
J. Biol. Syst.
31
(
01
),
37
67
(
2023
).
43.
R. E.
Gaines
and
J. L.
Mawhin
,
Coincidence Degree and Non-linear Differential Equations
(
Springer
,
Berlin
,
1977
).
44.
B.
Mondal
,
S.
Sarkar
, and
U.
Ghosh
, “
An autonomous and nonautonomous predator-prey model with fear, refuge, and nonlinear harvesting: Backward, Bogdanov-Takens, transcritical bifurcations, and optimal control
,”
Math. Methods Appl. Sci.
46
(
16
),
17260
17287
(
2023
).
45.
S. J.
Schreiber
,
M.
Benaim
, and
K. A.
Atchade
, “
Persistence in fluctuating environments
,”
J. Math. Biol.
62
,
655
683
(
2011
).
46.
A.
Hening
,
D. H.
Nguyen
, and
P.
Chesson
, “
A general theory of coexistence and extinction for stochastic ecological communities
,”
J. Math. Biol.
82
(
6
),
56
(
2021
).
47.
S.
Roy
,
S.
Sajan
,
P. K.
Tiwari
, and
B.
Dubey
, “
Dynamics of a stage-structured predator-prey system with fear-induced group defense in autonomous and nonautonomous settings
,”
Chaos
34
(
6
),
063133
(
2024
).
You do not currently have access to this content.