In recent years, the introduction of memristors in discrete chaotic map has attracted much attention due to its enhancement of the complexity and controllability of chaotic maps, especially in the fields of secure communication and random number generation, which have shown promising applications. In this work, a three-dimensional discrete memristive hyperchaotic map (3D-DMCHM) based on cosine memristor is constructed. First, we analyze the fixed points of the map and their stability, showing that the map can either have a linear fixed point or none at all, and the stability depends on the parameters and initial state of the map. Then, phase diagrams, bifurcation diagrams, Lyapunov exponents, timing diagrams, and attractor basins are used to analyze the complex dynamical behaviors of the 3D-DMCHM, revealing that the 3D-DMCHM enters into a chaotic state through a period-doubling bifurcation path, and some special dynamical phenomena such as multi-layer differentiation, multi-amplitude control, and offset boosting behaviors are also observed. In particular, with the change of memristor initial conditions, there exists an offset that only homogeneous hidden chaotic attractors or a mixed state offset with coexistence of point attractors and chaotic attractors. Finally, we confirmed the high complexity of 3D-DMCHM through complexity tests and successfully implemented it using a digital signal processing circuit, demonstrating its hardware feasibility.

1.
E. N.
Lorenz
, “
Deterministic nonperiodic flow
,”
J. Atmos. Sci.
20
,
130
141
(
1963
).
2.
A.
Calistri
,
P.
Francesco Roggero
, and
G.
Palù
, “
Chaos theory in the understanding of COVID-19 pandemic dynamics
,”
Gene
912
,
148334
(
2024
).
3.
Y.
Du
,
C.
Chen
,
C.
Chen
,
Y.
Liu
,
L.
Wu
,
E.
Zuo
, and
X.
Lv
, “
Feature fusion technology based on serum FTIR spectra combined with chaos theory in the disease auxiliary diagnosis
,”
Appl. Soft Comput.
163
,
111911
(
2024
).
4.
T.
Yamaguchi
and
T.
Mizutani
, “
Predicting the maximum displacements of structures during an earthquake based on chaos theory
,”
Eng. Struct.
318
,
118794
(
2024
).
5.
G.
Zhang
,
S.
Shao
, and
T.
Huang
, “
A high-data-rate hybrid index communication system based on quadrature chaos shift keying
,”
Chaos Solitons Fractals
185
,
115117
(
2024
).
6.
J.
Tang
,
Z.
Zhang
, and
T.
Huang
, “
Two-dimensional cosine–sine interleaved chaotic system for secure communication
,”
IEEE Trans. Circuits Syst. II Express Briefs
71
,
2479
2483
(
2024
).
7.
M.
Wang
,
M.
An
,
S.
He
,
X.
Zhang
,
H.
Ho-Ching Iu
, and
Z.
Li
, “
Two-dimensional memristive hyperchaotic maps with different coupling frames and its hardware implementation
,”
Chaos
33
,
073129
(
2023
).
8.
Z.
Yang
,
Y.
Liu
,
Y.
Wu
,
Y.
Qi
,
F.
Ren
, and
S.
Li
, “
A high speed pseudo-random bit generator driven by 2D-discrete hyperchaos
,”
Chaos Solitons Fractals
167
,
113039
(
2023
).
9.
Q.
Gao
and
X.
Zhang
, “
Multiple-image encryption algorithm based on a new composite chaotic system and 3D coordinate matrix
,”
Chaos Solitons Fractals
189
,
115587
(
2024
).
10.
C.
Dong
and
M.
Yang
, “
A novel 4D memristor-based hyperchaotic system with hidden attractors: Dynamics, periodic orbits analysis, and DSP realization
,”
Chin. J. Phys.
89
,
930
942
(
2024
).
11.
S.
Yan
,
E.
Wang
, and
Q.
Wang
, “
Analysis and circuit implementation of a non-equilibrium fractional-order chaotic system with hidden multistability and special offset-boosting
,”
Chaos
33
,
033107
(
2023
).
12.
D. M.-E.
Ángel Guti
, “
Pseudorandom number generator based on novel 2D Hénon-Sine hyperchaotic map with microcontroller implementation
,”
Nonlinear Dyn.
111
,
6773
6789
(
2023
).
13.
Q.
Lai
,
L.
Yang
,
Y. L.
Li
,
M.
Yuan
,
Z. C.
Ye
, and
X.
Wang
, “
Design and realization of discrete memristive hyperchaotic map with application in image encryption
,”
Chaos Solitons Fractals
165
,
112781
(
2022
).
14.
L.
Yang
and
Q.
Lai
, “
Construction and implementation of discrete memristive hyperchaotic map with hidden attractors and self-excited attractors
,”
Integration
94
,
102091
(
2024
).
15.
H.
Bao
,
K.
Rong
,
M.
Chen
,
X.
Zhang
, and
B.
Bao
, “
Multistability and synchronization of discrete maps via memristive coupling
,”
Chaos Solitons Fractals
174
,
113844
(
2023
).
16.
S.
Zhang
,
H.
Zhang
, and
C.
Wang
, “
Memristor initial-boosted extreme multistability in the novel dual-memristor hyperchaotic maps
,”
Chaos Solitons Fractals
174
,
113885
(
2023
).
17.
L.
Chua
, “
Memristor-the missing circuit element
,”
IEEE Trans. Circuit Theory
18
,
507
519
(
1971
).
18.
J.
Hu
,
H.
Bao
,
Q.
Xu
,
M.
Chen
, and
B.
Bao
, “
Synchronization generations and transitions in two map-based neurons coupled with locally active memristor
,”
Chaos Solitons Fractals
184
,
114993
(
2024
).
19.
Y.
Li
,
C.
Li
,
Y.
Zhao
, and
S.
Liu
, “
Memristor-type chaotic mapping
,”
Chaos
32
,
021104
(
2022
).
20.
F.
Wang
and
F.
Wang
, “
Design of chaotic circuit based on known memristor
,”
Electron. Lett.
60
,
e13294
(
2024
).
21.
R.
Ramamoorthy
,
K.
Rajagopal
,
G. D.
Leutcho
,
O.
Krejcar
,
H.
Namazi
, and
I.
Hussain
, “
Multistable dynamics and control of a new 4D memristive chaotic Sprott B system
,”
Chaos Solitons Fractals
156
,
111834
(
2022
).
22.
S.
He
,
J.
Liu
,
H.
Wang
, and
K.
Sun
, “
A discrete memristive neural network and its application for character recognition
,”
Neurocomputing
523
,
1
8
(
2023
).
23.
F.
Luo
,
W.-M.
Zhong
,
X.-G.
Tang
,
J.-Y.
Chen
,
Y.-P.
Jiang
, and
Q.-X.
Liu
, “
Application of artificial synapse based on all-inorganic perovskite memristor in neuromorphic computing
,”
Nano Mater. Sci.
6
,
68
76
(
2024
).
24.
M.
Messadi
,
K.
Kemih
,
L.
Moysis
, and
C.
Volos
, “
A new 4D memristor chaotic system: Analysis and implementation
,”
Integration
88
,
91
100
(
2023
).
25.
D.
Ding
,
X.
Xu
,
Z.
Yang
,
H.
Zhang
,
H.
Zhu
, and
T.
Liu
, “
Extreme multistability of fractional-order hyperchaotic system based on dual memristors and its implementation
,”
Chaos Solitons Fractals
183
,
114878
(
2024
).
26.
Y.
Peng
,
S.
He
, and
K.
Sun
, “
A higher dimensional chaotic map with discrete memristor
,”
AEU Int. J. Electron. Commun.
129
,
153539
(
2021
).
27.
Q.
Lai
,
L.
Yang
, and
G.
Chen
, “
Design and performance analysis of discrete memristive hyperchaotic systems with stuffed cube attractors and ultraboosting behaviors
,”
IEEE Trans. Indus. Electron.
71
,
7819
7828
(
2024
).
28.
J.
Mou
,
Z.
Han
,
Y.
Cao
, and
S.
Banerjee
, “
Discrete second-order memristor and its application to chaotic map
,”
IEEE Trans. Circuits Syst. II Express Briefs
71
,
2824
2828
(
2024
).
29.
Q.
Lai
,
L.
Yang
, and
G.
Chen
, “
Two-dimensional discrete memristive oscillatory hyperchaotic maps with diverse dynamics
,”
IEEE Trans. Ind. Electron.
2024
,
1
11
.
30.
X.
Liu
,
K.
Sun
,
H.
Wang
, and
S.
He
, “
A class of novel discrete memristive chaotic map
,”
Chaos Solitons Fractals
174
,
113791
(
2023
).
31.
Z.
Fan
,
C.
Zhang
,
Y.
Wang
, and
B.
Du
, “
Construction, dynamic analysis and DSP implementation of a novel 3D discrete memristive hyperchaotic map
,”
Chaos Solitons Fractals
177
,
114303
(
2023
).
32.
B.
Xu
,
X.
Luo
,
Y.
Wang
,
L.
Bai
,
K.
Chen
, and
J.
Zhao
, “
A 4D trigonometric-based memristor hyperchaotic map to ultra-fast PRNG
,”
IEEE Trans. Ind. Inform.
20
,
8673
8683
(
2024
).
33.
Y.
Li
,
C.
Li
,
Q.
Zhong
,
S.
Liu
, and
T.
Lei
, “
A memristive chaotic map with only one bifurcation parameter
,”
Nonlinear Dyn.
112
,
3869
3886
(
2024
).
34.
X.
Zhang
,
C.
Li
,
K.
Huang
,
Z.
Liu
, and
Y.
Yang
, “
A chaotic oscillator with three independent offset boosters and its simplified circuit implementation
,”
IEEE Trans. Circuits Syst. II Express Briefs
71
,
51
55
(
2024
).
35.
Z.
Wang
,
C.
Li
,
Y.
Li
,
S.
Liu
, and
A.
Akgul
, “
A chaotic map with two-dimensional offset boosting
,”
Chaos
34
,
063130
(
2024
).
36.
Q.
Lai
and
L.
Yang
, “
A new 3-D memristive hyperchaotic map with multi-parameter-relied dynamics
,”
IEEE Trans. Circuits Syst. II Express Briefs
70
,
1625
1629
(
2023
).
37.
C.
Li
,
C.
Yi
,
Y.
Li
,
S.
Mitro
, and
Z.
Wang
, “
Offset boosting in a discrete system
,”
Chaos
34
,
031102
(
2024
).
38.
C.
Li
,
Y.
Gao
,
T.
Lei
,
R. Y. M.
Li
, and
Y.
Xu
, “
Two independent offset controllers in a three-dimensional chaotic system
,”
Int. J. Bifur. Chaos
34
,
2450008
(
2024
).
39.
M.
Wang
,
J.
Ding
,
J.
Li
,
S.
He
,
X.
Zhang
,
H. H.-C.
Lu
, and
Z.
Li
, “
A novel multistable chaotic system with 2m-scroll attractor and its application
,”
European Phys. J. Plus
139
,
64
(
2024
).
40.
H.
Gu
,
C.
Li
,
Y.
Li
,
X.
Ge
, and
T.
Lei
, “
Various patterns of coexisting attractors in a hyperchaotic map
,”
Nonlinear Dyn.
111
,
7807
7818
(
2023
).
41.
G.
Wang
,
F.
Yuan
,
G.
Chen
, and
Y.
Zhang
, “
Coexisting multiple attractors and riddled basins of a memristive system
,”
Chaos
28
,
013125
(
2018
).
42.
C.
Li
and
J. C.
Sprott
, “
An infinite 3-D quasiperiodic lattice of chaotic attractor
,”
Phys. Lett. A
382
,
581
587
(
2018
).
43.
H.
Bao
,
Z.
Hua
,
N.
Wang
,
L.
Zhu
,
M.
Chen
, and
B.
Bao
, “
Initials-boosted coexisting chaos in a 2-D sine map and its hardware implementation
,”
IEEE Trans. Ind. Inform.
17
,
1132
1140
(
2021
).
44.
H.
Bao
,
M.
Chen
,
H.
Wu
, and
B.
Bao
, “
Memristor initial-boosted coexisting plane bifurcations and its extreme multi-stability reconstitution in two-memristor-based dynamical system
,”
Sci. China Technol. Sci.
63
,
603
613
(
2019
).
45.
H.
Bao
,
Z.
Hua
,
H.
Li
,
M.
Chen
, and
B.
Bao
, “
Memristor-based hyperchaotic maps and application in auxiliary classifier generative adversarial nets
,”
IEEE Trans. Ind. Inform.
18
,
5297
5306
(
2022
).
46.
J.
Zuo
,
J.
Zhang
,
X.
Wei
,
L.
Yang
,
N.
Cheng
, and
J.
Lv
, “
Design and application of multisroll conservative chaotic system with no-equilibrium, dynamics analysis, circuit implementation
,”
Chaos Solitons Fractals
187
,
115331
(
2024
).
47.
S.
Yan
,
H.
Zhang
, and
D.
Jiang
, “
Multi-wing chaotic system based on smooth function and its predefined time synchronization
,”
Commun. Nonlinear Sci. Numer. Simul.
138
,
108178
(
2024
).
48.
H.
Li
,
Z.
Hua
,
H.
Bao
,
L.
Zhu
,
M.
Chen
, and
B.
Bao
, “
Two-dimensional memristive hyperchaotic maps and application in secure communication
,”
IEEE Trans. Ind. Electron.
68
,
9931
9940
(
2021
).
You do not currently have access to this content.