Exploring spatiotemporal patterns of high-dimensional electroencephalography (EEG) time series generated from complex brain system is crucial for deciphering aging and cognitive functioning. Analyzing high-dimensional EEG series poses challenges, particularly when employing distance-based methods for spatiotemporal dynamics. Therefore, we proposed an innovative methodology for multi-channel EEG data, termed as Spatiotemporal Information-based Similarity (STIBS) analysis. The core of this method is to first perform state space compression of multi-channel EEG time series using global field power, which can provide insight into the dynamic integration of spatiotemporal patterns between the steady states and non-steady states of brain. Subsequently, we quantify the pairwise differences and non-randomness of spatiotemporal patterns using an information-based similarity analysis. Results demonstrated that this method holds the potential to serve as a distinguishing marker between young and elderly on both pairwise differences and non-randomness indices. Young individuals and those with higher cognitive abilities exhibit more complex macrostructure and non-random spatiotemporal patterns, whereas both aging and cognitive decline lead to more randomized spatiotemporal patterns. We further extended the proposed analytics to brain regions adversarial STIBS (bra-STIBS), highlighting differences between young and elderly, as well as high and low cognitive groups. Furthermore, utilizing the STIBS-based XGBoost model yields superior recognition accuracy in aging (93.05%) and cognitive functioning (74.29%, 64.19%, and 80.28%, respectively, for attention, memory, and compatibility performance recognition). STIBS-based methodology not only contributes to the ongoing exploration of neurobiological changes in aging but also provides a powerful tool for characterizing the spatiotemporal nonlinear dynamics of the brain and their implications for cognitive functioning.

1.
D. V. C.
Brito
,
F.
Esteves
,
A. T.
Rajado
,
N.
Silva
,
R.
Andrade
,
J.
Apolónio
,
S.
Calado
,
L.
Faleiro
,
C.
Matos
,
N.
Marques
,
A.
Marreiros
,
H.
Nzwalo
,
S.
Pais
,
I.
Palmeirim
,
V.
Roberto
,
S.
Simão
,
N.
Joaquim
,
R.
Miranda
,
A.
Pêgas
,
D. M.
Raposo
,
A.
Sardo
,
I.
Araújo
,
J.
Bragança
,
P.
Castelo-Branco
, and
C.
Nóbrega
, “
Assessing cognitive decline in the aging brain: Lessons from rodent and human studies
,”
npj Aging
9
(
1
),
23
(
2023
).
2.
D. L.
Murman
, “
The impact of age on cognition
,”
Semin
36
(
03
),
111
121
(
2015
).
3.
R.
McMackin
,
P.
Bede
,
N.
Pender
,
O.
Hardiman
, and
B.
Nasseroleslami
, “
Neurophysiological markers of network dysfunction in neurodegenerative diseases
,”
NeuroImage Clin.
22
,
101706
(
2019
).
4.
K.
Sergeev
,
A.
Runnova
,
M.
Zhuravlev
,
O.
Kolokolov
,
N.
Akimova
,
A.
Kiselev
,
A.
Titova
,
A.
Slepnev
,
N.
Semenova
, and
T.
Penzel
, “
Wavelet skeletons in sleep EEG-monitoring as biomarkers of early diagnostics of mild cognitive impairment
,”
Chaos
31
(
7
),
070401
(
2021
).
5.
Y.
Cao
,
L.
Cai
,
J.
Wang
,
R.
Wang
,
H.
Yu
,
Y.
Cao
, and
J.
Liu
, “
Characterization of complexity in the electroencephalograph activity of Alzheimer’s disease based on fuzzy entropy
,”
Chaos
25
(
8
),
083116
(
2015
).
6.
B.
Moezzi
,
L. M.
Pratti
,
B.
Hordacre
,
L.
Graetz
,
C.
Berryman
,
L. M.
Lavrencic
,
M. C.
Ridding
,
H. A. D.
Keage
,
M. D.
McDonnell
, and
M. R.
Goldsworthy
, “
Characterization of young and old adult brains: An EEG functional connectivity analysis
,”
Neuroscience
422
,
230
239
(
2019
).
7.
C.
Babiloni
,
G.
Binetti
,
A.
Cassarino
,
G.
Dal Forno
,
C.
Del Percio
,
F.
Ferreri
,
R.
Ferri
,
G.
Frisoni
,
S.
Galderisi
,
K.
Hirata
,
B.
Lanuzza
,
C.
Miniussi
,
A.
Mucci
,
F.
Nobili
,
G.
Rodriguez
,
G. L.
Romani
, and
P. M.
Rossini
, “
Sources of cortical rhythms in adults during physiological aging: A multicentric EEG study
,”
Hum. Brain Mapp.
27
(
2
),
162
172
(
2006
).
8.
E. L.
Vlahou
,
F.
Thurm
,
I. T.
Kolassa
, and
W.
Schlee
, “
Resting-state slow wave power, healthy aging and cognitive performance
,”
Sci. Rep.
4
(
1
),
5101
(
2014
).
9.
I.
Kottlarz
,
S.
Berg
,
D.
Toscano-Tejeida
,
I.
Steinmann
,
M.
Bähr
,
S.
Luther
,
M.
Wilke
,
U.
Parlitz
, and
A.
Schlemmer
, “
Extracting robust biomarkers from multichannel EEG time series using nonlinear dimensionality reduction applied to ordinal pattern statistics and spectral quantities
,”
Front. Physiol.
11
,
614565
(
2021
).
10.
S.
Krohn
,
N. V.
Schwanenflug
,
L.
Waschke
,
A.
Romanello
,
M.
Gell
,
D. D.
Garrett
, and
C.
Finke
, “
A spatiotemporal complexity architecture of human brain activity
,”
Sci. Adv.
9
, eabq3851 (
2023
).
11.
S.
Rahimi
,
R.
Jackson
,
S. R.
Farahibozorg
, and
O.
Hauk
, “
Time-lagged multidimensional pattern connectivity (TL-MDPC): An EEG/MEG pattern transformation based functional connectivity metric
,”
Neuroimage
270
,
119958
(
2023
).
12.
J.
Dreszer
,
M.
Grochowski
,
M.
Lewandowska
,
J.
Nikadon
,
J.
Gorgol
,
B.
Bałaj
,
K.
Finc
,
W.
Duch
,
P.
Kałamała
,
A.
Chuderski
, and
T.
Piotrowski
, “
Spatiotemporal complexity patterns of resting-state bioelectrical activity explain fluid intelligence: Sex matters
,”
Hum. Brain Mapp.
41
(
17
),
4846
4865
(
2020
).
13.
G.
Atluri
,
A.
Karpatne
, and
V.
Kumar
, “
Spatio-temporal data mining: A survey of problems and methods
,”
ACM Comput. Surv.
51
(
4
),
1
41
(
2019
).
14.
E.
Koutsaki
,
G.
Vardakis
, and
N.
Papadakis
, “
Spatiotemporal data mining problems and methods
,”
Analytics
2
(
2
),
485
508
(
2023
).
15.
R. G.
Townsend
and
P.
Gong
, “
Detection and analysis of spatiotemporal patterns in brain activity
,”
PLoS Comput. Biol.
14
(
12
),
1
29
(
2018
).
16.
D.
Lehmann
,
H.
Ozaki
, and
I.
Pal
, “
EEG alpha map series: Brain micro-states by space-oriented adaptive segmentation
,”
Electroencephalogr. Clin. Neurophysiol.
67
(
3
),
271
288
(
1987
).
17.
S.
Spadone
,
P.
Croce
,
F.
Zappasodi
, and
P.
Capotosto
, “
Pre-stimulus EEG microstates correlate with anticipatory alpha desynchronization
,”
Front. Hum. Neurosci.
14
,
182
(
2020
).
18.
J. R.
da Cruz
,
O.
Favrod
,
M.
Roinishvili
,
E.
Chkonia
,
A.
Brand
,
C.
Mohr
,
P.
Figueiredo
, and
M. H.
Herzog
, “
EEG microstates are a candidate endophenotype for schizophrenia
,”
Nat. Commun.
11
(
1
),
3089
(
2020
).
19.
J.
Schumacher
,
L. R.
Peraza
,
M.
Firbank
,
A. J.
Thomas
,
M.
Kaiser
,
P.
Gallagher
,
J. T.
O’Brien
,
A. M.
Blamire
, and
J. P.
Taylor
, “
Dysfunctional brain dynamics and their origin in Lewy body dementia
,”
Brain
142
(
6
),
1767
1782
(
2019
).
20.
H.
Jia
and
D.
Yu
, “
Aberrant intrinsic brain activity in patients with autism spectrum disorder: Insights from EEG microstates
,”
Brain Topogr.
32
,
295
303
(
2019
).
21.
F.
Vellante
,
F.
Ferri
,
G.
Baroni
,
P.
Croce
,
D.
Migliorati
,
M.
Pettoruso
,
D. D.
Berardis
,
G.
Martinotti
,
F.
Zappasodi
, and
M. D.
Giannantonio
, “
Euthymic bipolar disorder patients and EEG microstates: A neural signature of their abnormal self experience?
,”
J. Affect. Disord.
272
,
326
334
(
2020
).
22.
M.
Kikuchi
,
T.
Koenig
,
T.
Munesue
,
A.
Hanaoka
,
W.
Strik
,
T.
Dierks
,
Y.
Koshino
, and
Y.
Minabe
, “
EEG microstate analysis in drug-naive patients with panic disorder
,”
PLoS One
6
(
7
),
e22912
(
2011
).
23.
P.
Gui
,
Y.
Jiang
,
D.
Zang
,
Z.
Qi
,
J.
Tan
,
H.
Tanigawa
,
J.
Jiang
,
Y.
Wen
,
L.
Xu
,
J.
Zhao
,
Y.
Mao
,
M.
ming Poo
,
N.
Ding
,
S.
Dehaene
,
X.
Wu
, and
L.
Wang
, “
Assessing the depth of language processing in patients with disorders of consciousness
,”
Nat. Neurosci.
23
(
6
),
761
770
(
2020
).
24.
I. M.
Comsa
,
T. A.
Bekinschtein
, and
S.
Chennu
, “
Transient topographical dynamics of the electroencephalogram predict brain connectivity and behavioural responsiveness during drowsiness
,”
Brain Topogr.
32
(
2
),
315
331
(
2019
).
25.
D.
Van De Ville
,
J.
Britz
, and
C. M.
Michel
, “
EEG microstate sequences in healthy humans at rest reveal scale-free dynamics
,”
Proc. Natl. Acad. Sci. U. S. A.
107
(
42
),
18179
18184
(
2010
).
26.
L.
Tait
,
F.
Tamagnini
,
G.
Stothart
,
E.
Barvas
,
C.
Monaldini
,
R.
Frusciante
,
M.
Volpini
,
S.
Guttmann
,
E.
Coulthard
,
J. T.
Brown
,
N.
Kazanina
, and
M.
Goodfellow
, “
EEG microstate complexity for aiding early diagnosis of Alzheimer’s disease
,”
Sci. Rep.
10
(
1
),
1
10
(
2020
).
27.
A.
Sikka
,
H.
Jamalabadi
,
M.
Krylova
,
S.
Alizadeh
,
J. N.
van der Meer
,
L.
Danyeli
,
M.
Deliano
,
P.
Vicheva
,
T.
Hahn
,
T.
Koenig
,
D. R.
Bathula
, and
M.
Walter
, “
Investigating the temporal dynamics of electroencephalogram (EEG) microstates using recurrent neural networks
,”
Hum. Brain Mapp.
41
(
9
),
2334
2346
(
2020
).
28.
J.
Creaser
,
P.
Ashwin
,
C.
Postlethwaite
, and
J.
Britz
, “
Noisy network attractor models for transitions between EEG microstates
,”
J. Math. Neurosci.
11
(
1
),
1
25
(
2021
).
29.
S.
Mohammed
and
D. K.
Dey
, “
Scalable spatio-temporal Bayesian analysis of high-dimensional electroencephalography data
,”
Can. J. Stat.
49
(
1
),
107
128
(
2021
).
30.
N.
Jrad
and
M.
Congedo
, “
Identification of spatial and temporal features of EEG
,”
Neurocomputing
90
,
66
71
(
2012
).
31.
A.
Babayan
,
M.
Erbey
,
D.
Kumral
,
J. D.
Reinelt
,
A. M. F.
Reiter
,
J.
Röbbig
,
H.
Lina Schaare
,
M.
Uhlig
,
A.
Anwander
,
P. L.
Bazin
,
A.
Horstmann
,
L.
Lampe
,
V. V.
Nikulin
,
H.
Okon-Singer
,
S.
Preusser
,
A.
Pampel
,
C. S.
Rohr
,
J.
Sacher
,
A.
Thöne-Otto
,
S.
Trapp
,
T.
Nierhaus
,
D.
Altmann
,
K.
Arelin
,
M.
Blöchl
,
E.
Bongartz
,
P.
Breig
,
E.
Cesnaite
,
S.
Chen
,
R.
Cozatl
,
S.
Czerwonatis
,
G.
Dambrauskaite
,
M.
Dreyer
,
J.
Enders
,
M.
Engelhardt
,
M. M.
Fischer
,
N.
Forschack
,
J.
Golchert
,
L.
Golz
,
C. A.
Guran
,
S.
Hedrich
,
N.
Hentschel
,
D. I.
Hoffmann
,
J. M.
Huntenburg
,
R.
Jost
,
A.
Kosatschek
,
S.
Kunzendorf
,
H.
Lammers
,
M. E.
Lauckner
,
K.
Mahjoory
,
A. S.
Kanaan
,
N.
Mendes
,
R.
Menger
,
E.
Morino
,
K.
Näthe
,
J.
Neubauer
,
H.
Noyan
,
S.
Oligschläger
,
P.
Panczyszyn-Trzewik
,
D.
Poehlchen
,
N.
Putzke
,
S.
Roski
,
M. C.
Schaller
,
A.
Schieferbein
,
B.
Schlaak
,
R.
Schmidt
,
K. J.
Gorgolewski
,
H. M.
Schmidt
,
A.
Schrimpf
,
S.
Stasch
,
M.
Voss
,
A.
Wiedemann
,
D. S.
Margulies
,
M.
Gaebler
, and
A.
Villringer
, “
Data descriptor: A mind-brain-body dataset of MRI, EEG, cognition, emotion, and peripheral physiology in young and old adults
,”
Sci. Data
6
,
1
21
(
2019
).
32.
R. N.
Vigário
, “
Extraction of ocular artefacts from EEG using independent component analysis
,”
Electroencephalogr. Clin. Neurophysiol.
103
(
3
),
395
404
(
1997
).
33.
A. C. C.
Yang
,
S. S.
Hseu
,
H. W.
Yien
,
A. L.
Goldberger
, and
C. K.
Peng
, “
Linguistic analysis of the human heartbeat using frequency and rank order statistics
,”
Phys. Rev. Lett.
90
(
10
),
4
(
2003
).
34.
A. P.
Zanesco
, “
EEG electric field topography is stable during moments of high field strength
,”
Brain Topogr.
33
(
4
),
450
460
(
2020
).
35.
P. D.
Welch
, “
The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms
,”
IEEE Trans. Audio Electroacoust.
15
(
2
),
70
73
(
1967
).
36.
A. T.
Poulsen
,
A.
Pedroni
,
N.
Langer
, and
L. K.
Hansen
, “Microstate EEGlab toolbox: An introductory guide,” BioRxiv (2018), p. 289850.
37.
C. M.
Michel
and
T.
Koenig
, “
EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: A review
,”
Neuroimage
180
,
577
593
(
2018
).
38.
D.
Lehmann
, “
Multichannel topography of human alpha EEG fields
,”
Electroencephalogr. Clin. Neurophysiol.
31
(
5
),
439
449
(
1971
).
39.
A.
Khanna
,
A.
Pascual-Leone
,
C. M.
Michel
, and
F.
Farzan
, “
Microstates in resting-state EEG: Current status and future directions
,”
Neurosci. Biobehav. Rev.
49
,
105
113
(
2015
).
40.
J.
Britz
,
D.
Van De Ville
, and
C. M.
Michel
, “
BOLD correlates of EEG topography reveal rapid resting-state network dynamics
,”
Neuroimage
52
(
4
),
1162
1170
(
2010
).
41.
V.
Brodbeck
,
A.
Kuhn
,
F.
von Wegner
,
A.
Morzelewski
,
E.
Tagliazucchi
,
S.
Borisov
,
C. M.
Michel
, and
H.
Laufs
, “
EEG microstates of wakefulness and NREM sleep
,”
Neuroimage
62
(
3
),
2129
2139
(
2012
).
42.
C. S.
Musaeus
,
M. S.
Nielsen
, and
P.
Høgh
, “
Microstates as disease and progression markers in patients with mild cognitive impairment
,”
Front. Neurosci.
13
,
563
(
2019
).
43.
I.
Guyon
,
J.
Weston
,
S.
Barnhill
, and
V.
Vapnik
, “
Gene selection for cancer classification using support vector machines
,”
Mach. Learn.
46
,
389
422
(
2002
).
44.
H. A.
Deery
,
R. D.
Paolo
,
C.
Moran
,
G. F.
Egan
, and
S. D.
Jamadar
, “
The older adult brain is less modular, more integrated, and less efficient at rest: A systematic review of large-scale resting-state functional brain networks in aging
,”
Psychophysiology
60
(
1
),
1
39
(
2023
).
45.
Y.
Chen
,
X.
Zhao
,
X.
Zhang
,
Y.
Liu
,
P.
Zhou
,
H.
Ni
,
J.
Ma
, and
D.
Ming
, “
Age-related early/late variations of functional connectivity across the human lifespan
,”
Neuroradiology
60
,
403
412
(
2018
).
46.
W.
Wan
,
Z.
Gao
,
Q.
Zhang
,
Z.
Gu
,
C.
Chang
,
C.-K.
Peng
, and
X.
Cui
, “
Resting state EEG complexity as a predictor of cognitive performance
,”
Physica A
624
,
128952
(
2023
).
47.
O.
Sporns
,
G.
Tononi
, and
G. M.
Edelman
, “
Connectivity and complexity: The relationship between neuroanatomy and brain dynamics
,”
Neural Netw.
13
(
8–9
),
909
922
(
2000
).
48.
Y.
Fan
,
R.
Wang
,
L.
Zhou
,
P.
Lin
, and
Y.
Wu
, “
Nested-spectral analysis reveals a disruption of behavioral-related dynamic functional balance in the aging brain
,”
Nonlinear Dyn.
111
(
10
),
9537
9553
(
2023
).
49.
T. M.
Madhyastha
and
T. J.
Grabowski
, “
Age-related differences in the dynamic architecture of intrinsic networks
,”
Brain Connect.
4
(
4
),
231
241
(
2014
).
50.
X.
Wen
,
L.
Dong
,
J.
Chen
,
J.
Xiang
,
J.
Yang
,
H.
Li
,
X.
Liu
,
C.
Luo
, and
D.
Yao
, “
Detecting the information of functional connectivity networks in normal aging using deep learning from a big data perspective
,”
Front. Neurosci.
13
,
1435
(
2020
).
51.
L.
Tian
,
Q.
Li
,
C.
Wang
, and
J.
Yu
, “
Changes in dynamic functional connections with aging
,”
Neuroimage
172
,
31
39
(
2018
).
52.
R.
Ishii
,
L.
Canuet
,
Y.
Aoki
,
M.
Hata
,
M.
Iwase
,
S.
Ikeda
,
K.
Nishida
, and
M.
Ikeda
, “
Healthy and pathological brain aging: From the perspective of oscillations, functional connectivity, and signal complexity
,”
Neuropsychobiology
75
(
4
),
151
161
(
2018
).
53.
A.
Escrichs
,
C.
Biarnes
,
J.
Garre-Olmo
,
J. M.
Fernández-Real
,
R.
Ramos
,
R.
Pamplona
,
R.
Brugada
,
J.
Serena
,
L.
Ramió-Torrentà
,
G.
Coll-De-Tuero
,
L.
Gallart
,
J.
Barretina
,
J. C.
Vilanova
,
J.
Mayneris-Perxachs
,
M.
Essig
,
C. R.
Figley
,
S.
Pedraza
,
J.
Puig
, and
G.
Deco
, “
Whole-brain dynamics in aging: Disruptions in functional connectivity and the role of the rich club
,”
Cereb. Cortex
31
(
5
),
2466
2481
(
2021
).
54.
P. M.
Greenwood
, “
The frontal aging hypothesis evaluated
,”
J. Int. Neuropsychol. Soc.
6
(
6
),
705
726
(
2000
).
55.
T. P.
Zanto
and
A.
Gazzaley
, “
Aging of the frontal lobe
,”
Handb. Clin. Neurol.
163
,
369
389
(
2019
).
56.
E.
Cesnaite
,
P.
Steinfath
,
M.
Jamshidi Idaji
,
T.
Stephani
,
D.
Kumral
,
S.
Haufe
,
C.
Sander
,
T.
Hensch
,
U.
Hegerl
,
S.
Riedel-Heller
,
S.
Röhr
,
M. L.
Schroeter
,
A. V.
Witte
,
A.
Villringer
, and
V. V.
Nikulin
, “
Alterations in rhythmic and non-rhythmic resting-state EEG activity and their link to cognition in older age
,”
Neuroimage
268
,
119810
(
2023
).
57.
R.
Manor
,
D.
Cheaha
,
E.
Kumarnsit
, and
N.
Samerphob
, “
Age-related deterioration of alpha power in cortical areas slowing motor command formation in healthy elderly subjects
,”
In Vivo
37
(
2
),
679
684
(
2023
).
58.
Y.
Aoki
,
M.
Hata
,
M.
Iwase
,
R.
Ishii
,
R. D.
Pascual-Marqui
,
T.
Yanagisawa
,
H.
Kishima
, and
M.
Ikeda
, “
Cortical electrical activity changes in healthy aging using EEG-eLORETA analysis
,”
Neuroimage Rep.
2
(
4
),
100143
(
2022
).
59.
M. G.
Knyazeva
,
E.
Barzegaran
,
V. Y.
Vildavski
, and
J. F.
Demonet
, “
Aging of human alpha rhythm
,”
Neurobiol. Aging
69
,
261
273
(
2018
).
60.
C.
Babiloni
,
R.
Ferri
,
G.
Binetti
,
A.
Cassarino
,
G. D.
Forno
,
M.
Ercolani
,
F.
Ferreri
,
G. B.
Frisoni
,
B.
Lanuzza
,
C.
Miniussi
,
F.
Nobili
,
G.
Rodriguez
,
F.
Rundo
,
C. J.
Stam
,
T.
Musha
,
F.
Vecchio
, and
P. M.
Rossini
, “
Fronto-parietal coupling of brain rhythms in mild cognitive impairment: A multicentric EEG study
,”
Brain Res. Bull.
69
(
1
),
63
73
(
2006
).
61.
G.
Jauny
,
F.
Eustache
, and
T. T.
Hinault
, “
M/EEG dynamics underlying reserve, resilience, and maintenance in aging: A review
,”
Front. Psychol.
13
,
861973
(
2022
).
62.
A. P.
Zanesco
,
B. G.
King
,
A. C.
Skwara
, and
C. D.
Saron
, “
Within and between-person correlates of the temporal dynamics of resting EEG microstates
,”
Neuroimage
211
,
116631
(
2020
).
63.
M.
Tröndle
,
T.
Popov
,
A.
Pedroni
,
C.
Pfeiffer
,
Z.
Barańczuk-Turska
, and
N.
Langer
, “
Decomposing age effects in EEG alpha power
,”
Cortex
161
,
116
144
(
2023
).
You do not currently have access to this content.