Power flow calculation plays a significant role in the operation and planning of modern power systems. Traditional numerical calculation methods have good interpretability but high time complexity. They are unable to cope with increasing amounts of data in power systems; therefore, many machine learning based methods have been proposed for more efficient power flow calculation. Despite the good performance of these methods in terms of computation speed, they often overlook the importance of transmission lines and do not fully consider the physical mechanisms in the power systems, thereby weakening the prediction accuracy of power flow. Given the importance of the transmission lines as well as to comprehensively consider their mutual influence, we shift our focus from bus adjacency relationships to transmission line adjacency relationships and propose a physics-informed line graph neural network framework. This framework propagates information between buses and transmission lines by introducing the concepts of the incidence matrix and the line graph matrix. Based on the mechanics of the power flow equations, we further design a loss function by integrating physical information to ensure that the output results of the model satisfy the laws of physics and have better interpretability. Experimental results on different power grid datasets and different scenarios demonstrate the accuracy of our proposed model.

1.
C. D.
Brummitt
,
P. D.
Hines
,
I.
Dobson
,
C.
Moore
, and
R. M.
D’Souza
, “
Transdisciplinary electric power grid science
,”
Proc. Natl. Acad. Sci. U.S.A.
110
,
12159
(
2013
).
2.
M.
Titz
,
F.
Kaiser
,
J.
Kruse
, and
D.
Witthaut
, “
Predicting dynamic stability from static features in power grid models using machine learning
,”
Chaos
34
,
013139
(
2024
).
3.
Z.
Chen
,
J.
Wu
,
Y.
Xia
, and
X.
Zhang
, “
Robustness of interdependent power grids and communication networks: A complex network perspective
,”
IEEE Trans. Circuits Syst. II: Express Br.
65
,
115
119
(
2017
).
4.
T.
Nesti
,
A.
Zocca
, and
B.
Zwart
, “
Emergent failures and cascades in power grids: A statistical physics perspective
,”
Phys. Rev. Lett.
120
,
258301
(
2018
).
5.
T.
Ritmeester
and
H.
Meyer-Ortmanns
, “
State estimation of power flows for smart grids via belief propagation
,”
Phys. Rev. E
102
,
012311
(
2020
).
6.
B. A.
Carreras
,
E. B.
Tchawou Tchuisseu
,
J. M.
Reynolds-Barredo
,
D.
Gomila
, and
P.
Colet
, “
Effects of demand control on the complex dynamics of electric power system blackouts
,”
Chaos
30
,
113121
(
2020
).
7.
C.
Nauck
,
M.
Lindner
,
K.
Schürholt
, and
F.
Hellmann
, “
Toward dynamic stability assessment of power grid topologies using graph neural networks
,”
Chaos
33
,
103103
(
2023
).
8.
H. W.
Dommel
and
W. F.
Tinney
, “
Optimal power flow solutions
,”
IEEE Trans. Power Appar. Syst.
PAS-87
,
1866
1876
(
1968
).
9.
S.
Bolognani
and
S.
Zampieri
, “
On the existence and linear approximation of the power flow solution in power distribution networks
,”
IEEE Trans. Power Syst.
31
,
163
172
(
2015
).
10.
J.
Kruse
,
E.
Cramer
,
B.
Schäfer
, and
D.
Witthaut
, “
Physics-informed machine learning for power grid frequency modeling
,”
PRX Energy
2
,
043003
(
2023
).
11.
Y.
Zou
,
H.
Zhang
,
H.
Wang
, and
J.
Hu
, “
Predicting Braess’s paradox of power grids using graph neural networks
,”
Chaos
34
,
013127
(
2024
).
12.
Y.
Ng
,
S.
Misra
,
L. A.
Roald
, and
S.
Backhaus
, “Statistical learning for DC optimal power flow,” in 2018 Power Systems Computation Conference (PSCC) (IEEE, 2018), pp. 1–7.
13.
Y.
Sun
et al., “Local feature sufficiency exploration for predicting security-constrained generation dispatch in multi-area power systems,” in 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA) (IEEE, 2018), pp. 1283–1289.
14.
R.
Canyasse
,
G.
Dalal
, and
S.
Mannor
, “Supervised learning for optimal power flow as a real-time proxy,” in 2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT) (IEEE, 2017), pp. 1–5.
15.
Y.
Du
et al., “
Inferring attracting basins of power system with machine learning
,”
Phys. Rev. Res.
6
,
013181
(
2024
).
16.
N. M.
Rodrigues
,
F. M.
Janeiro
, and
P. M.
Ramos
, “
Deep learning for power quality event detection and classification based on measured grid data
,”
IEEE Trans. Instrum. Meas.
72
,
1
11
(
2023
).
17.
G.
Chen
,
H.
Zhang
,
H.
Hui
,
N.
Dai
, and
Y.
Song
, “
Scheduling thermostatically controlled loads to provide regulation capacity based on a learning-based optimal power flow model
,”
IEEE Trans. Sustain. Energy
12
,
2459
2470
(
2021
).
18.
M.
Moradi
,
Y.
Weng
, and
Y.-C.
Lai
, “
Defending smart electrical power grids against cyberattacks with deep Q-learning
,”
PRX Energy
1
,
033005
(
2022
).
19.
Y.
Tan
,
Y.
Chen
,
Y.
Li
, and
Y.
Cao
, “
Linearizing power flow model: A hybrid physical model-driven and data-driven approach
,”
IEEE Trans. Power Syst.
35
,
2475
2478
(
2020
).
20.
X.
Lei
et al., “
Data-driven optimal power flow: A physics-informed machine learning approach
,”
IEEE Trans. Power Syst.
36
,
346
354
(
2021
).
21.
R.
Nellikkath
and
S.
Chatzivasileiadis
, “Physics-informed neural networks for minimising worst-case violations in DC optimal power flow,” in 2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm) (IEEE, 2021), pp. 419–424.
22.
F.
Scarselli
,
M.
Gori
,
A. C.
Tsoi
,
M.
Hagenbuchner
, and
G.
Monfardini
, “
The graph neural network model
,”
IEEE Trans. Neural Netw.
20
,
61
80
(
2008
).
23.
C.
Kim
,
K.
Kim
,
P.
Balaprakash
, and
M.
Anitescu
, “Graph convolutional neural networks for optimal load shedding under line contingency,” in 2019 IEEE Power & Energy Society General Meeting (PESGM) (IEEE, 2019), pp. 1–5.
24.
T.
Falconer
and
L.
Mones
, “
Leveraging power grid topology in machine learning assisted optimal power flow
,”
IEEE Trans. Power Syst.
38
,
2234
2246
(
2022
).
25.
Y.
Zhu
,
Y.
Zhou
,
W.
Wei
, and
N.
Wang
, “
Cascading failure analysis based on a physics-informed graph neural network
,”
IEEE Trans. Power Syst.
38
,
3632
3641
(
2023
).
26.
X.
Pan
,
M.
Chen
,
T.
Zhao
, and
S. H.
Low
, “
DeepOPF: A feasibility-optimized deep neural network approach for AC optimal power flow problems
,”
IEEE Syst. J.
17
,
673
683
(
2023
).
27.
F.
Zohrizadeh
et al., “
A survey on conic relaxations of optimal power flow problem
,”
Eur. J. Oper. Res.
287
,
391
409
(
2020
).
28.
S.
Mhanna
and
P.
Mancarella
, “
An exact sequential linear programming algorithm for the optimal power flow problem
,”
IEEE Trans. Power Syst.
37
,
666
679
(
2021
).
29.
D. K.
Molzahn
and
I. A.
Hiskens
, “
Convex relaxations of optimal power flow problems: An illustrative example
,”
IEEE Trans. Circuits Syst. I: Regul. Pap.
63
,
650
660
(
2016
).
30.
L.
Halilbašić
,
P.
Pinson
, and
S.
Chatzivasileiadis
, “
Convex relaxations and approximations of chance-constrained AC-OPF problems
,”
IEEE Trans. Power Syst.
34
,
1459
1470
(
2019
).
31.
X.
Bai
,
H.
Wei
,
K.
Fujisawa
, and
Y.
Wang
, “
Semidefinite programming for optimal power flow problems
,”
Int. J. Electr. Power Energy Syst.
30
,
383
392
(
2008
).
32.
R. A.
Jabr
, “
Optimal power flow using an extended conic quadratic formulation
,”
IEEE Trans. Power Syst.
23
,
1000
1008
(
2008
).
33.
Y.
Yang
et al., “
Fast calculation of probabilistic power flow: A model-based deep learning approach
,”
IEEE Trans. Smart Grid
11
,
2235
2244
(
2019
).
34.
K.
Baker
and
A.
Bernstein
, “
Joint chance constraints in AC optimal power flow: Improving bounds through learning
,”
IEEE Trans. Smart Grid
10
,
6376
6385
(
2019
).
35.
M.
Khodayar
,
G.
Liu
,
J.
Wang
, and
M. E.
Khodayar
, “
Deep learning in power systems research: A review
,”
CSEE J. Power Energy Syst.
7
,
209
220
(
2020
).
36.
Q.
Ye
,
Y.
Li
,
S.
Pan
, and
J.
Xiang
, “Power flow for grids with unfixed topologies by using deep neural network,” in 2018 37th Chinese Control Conference (CCC) (IEEE, 2018), pp. 8780–8785.
37.
B.
Donon
et al., “
Neural networks for power flow: Graph neural solver
,”
Electr. Power Syst. Res.
189
,
106547
(
2020
).
38.
L.
Böttcher
et al., “Solving AC power flow with graph neural networks under realistic constraints,” in 2023 IEEE Belgrade PowerTech (IEEE, 2023), pp. 1–7.
39.
A. B.
Jeddi
and
A.
Shafieezadeh
, “A physics-informed graph attention-based approach for power flow analysis,” in 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA) (IEEE, 2021), pp. 1634–1640.
40.
X.
Hu
,
H.
Hu
,
S.
Verma
, and
Z.-L.
Zhang
, “
Physics-guided deep neural networks for power flow analysis
,”
IEEE Trans. Power Syst.
36
,
2082
2092
(
2020
).
41.
S.
Liu
,
C.
Wu
, and
H.
Zhu
, “
Topology-aware graph neural networks for learning feasible and adaptive AC-OPF solutions
,”
IEEE Trans. Power Syst.
38
,
5660
5670
(
2023
).
42.
F.
Chen
,
J.
Zhou
, and
J.-A.
Lu
, “
Node centrality based on edge dynamics in a chaotic network
,”
Int. J. Bifurc. Chaos
34
,
2450142
(
2024
).
43.
X.
Ding
,
H.
Wang
,
X.
Zhang
,
C.
Ma
, and
H.-F.
Zhang
, “
Dual nature of cyber-physical power systems and the mitigation strategies
,”
Reliab. Eng. Syst. Saf.
244
,
109958
(
2024
).
44.
T.
Kipf
,
E.
Fetaya
,
K.-C.
Wang
,
M.
Welling
, and
R.
Zemel
, “Neural relational inference for interacting systems,” in International Conference on Machine Learning (PMLR, 2018), pp. 2688–2697.
45.
D.
Wang
,
K.
Zheng
,
Q.
Chen
,
G.
Luo
, and
X.
Zhang
, “Probabilistic power flow solution with graph convolutional network,” in 2020 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe) (IEEE, 2020), pp. 650–654.
46.
Y.
Zhou
,
W.
Lee
,
R.
Diao
, and
D.
Shi
, “
Deep reinforcement learning based real-time AC optimal power flow considering uncertainties
,”
J. Mod. Power Syst. Clean Energy
10
,
1098
1109
(
2022
).
47.
R.
Nellikkath
and
S.
Chatzivasileiadis
, “
Physics-informed neural networks for AC optimal power flow
,”
Electr. Power Syst. Res.
212
,
108412
(
2022
).
You do not currently have access to this content.