We investigate some statistical properties of escaping particles in a billiard system whose boundary is described by two control parameters with a hole on its boundary. Initially, we analyze the survival probability for different hole positions and sizes. We notice that the survival probability follows an exponential decay with a characteristic power-law tail when the hole is positioned partially or entirely over large stability islands in phase space. We find that the survival probability exhibits scaling invariance with respect to the hole size. In contrast, the survival probability for holes placed in predominantly chaotic regions deviates from the exponential decay. We introduce two holes simultaneously and investigate the complexity of the escape basins for different hole sizes and control parameters by means of the basin entropy and the basin boundary entropy. We find a non-trivial relation between these entropies and the system’s parameters and show that the basin entropy exhibits scaling invariance for a specific control parameter interval.

1.
A. J.
Lichtenberg
and
M. A.
Lieberman
, Regular and Chaotic Dynamics, Applied Mathematical Sciences Vol. 38 (Springer-Verlag, 1992).
2.
R. S.
Mackay
,
J. D.
Meiss
, and
I. C.
Percival
, “
Transport in Hamiltonian systems
,”
Phys. D
13
,
55
81
(
1984
).
3.
J. D.
Meiss
and
E.
Ott
, “
Markov-tree model of intrinsic transport in Hamiltonian systems
,”
Phys. Rev. Lett.
55
,
2741
2744
(
1985
).
4.
J. D.
Meiss
and
E.
Ott
, “
Markov tree model of transport in area-preserving maps
,”
Phys. D
20
,
387
402
(
1986
).
5.
G.
Contopoulos
, “
Orbits in highly perturbed dynamical systems. 111. Nonperiodic orbits
,”
Astron. J.
76
,
147
(
1971
).
6.
C. F.
Karney
, “
Long-time correlations in the stochastic regime
,”
Phys. D
8
,
360
380
(
1983
).
7.
J. D.
Meiss
,
J. R.
Cary
,
C.
Grebogi
,
J. D.
Crawford
,
A. N.
Kaufman
, and
H. D.
Abarbanel
, “
Correlations of periodic, area-preserving maps
,”
Phys. D
6
,
375
384
(
1983
).
8.
B.
Chirikov
and
D.
Shepelyansky
, “
Correlation properties of dynamical chaos in Hamiltonian systems
,”
Phys. D
13
,
395
400
(
1984
).
9.
C.
Efthymiopoulos
,
G.
Contopoulos
,
N.
Voglis
, and
R.
Dvorak
, “
Stickiness and cantori
,”
J. Phys. A: Math. Gen.
30
,
8167
(
1997
).
10.
G.
Contopoulos
and
M.
Harsoula
, “
Stickiness in chaos
,”
Int. J. Bifurc. Chaos
18
,
2929
2949
(
2008
).
11.
G.
Cristadoro
and
R.
Ketzmerick
, “
Universality of algebraic decays in Hamiltonian systems
,”
Phys. Rev. Lett.
100
,
184101
(
2008
).
12.
G.
Contopoulos
and
M.
Harsoula
, “
Stickiness effects in conservative systems
,”
Int. J. Bifurc. Chaos
20
,
2005
2043
(
2010
).
13.
R. S.
MacKay
,
J. D.
Meiss
, and
I. C.
Percival
, “
Stochasticity and transport in Hamiltonian systems
,”
Phys. Rev. Lett.
52
,
697
700
(
1984
).
14.
F.
Vivaldi
,
G.
Casati
, and
I.
Guarneri
, “
Origin of long-time tails in strongly chaotic systems
,”
Phys. Rev. Lett.
51
,
727
730
(
1983
).
15.
Č.
Lozej
and
M.
Robnik
, “
Structure, size, and statistical properties of chaotic components in a mixed-type Hamiltonian system
,”
Phys. Rev. E
98
,
022220
(
2018
).
16.
G. M.
Zaslavski
and
B. V.
Chirikov
, “
Stochastic instability of non-linear oscillations
,”
Sov. Phys. Usp.
14
,
549
(
1972
).
17.
G. M.
Zaslavsky
,
M.
Edelman
, and
B. A.
Niyazov
, “
Self-similarity, renormalization, and phase space nonuniformity of Hamiltonian chaotic dynamics
,”
Chaos
7
,
159
181
(
1997
).
18.
G.
Zaslavsky
, “
Chaos, fractional kinetics, and anomalous transport
,”
Phys. Rep.
371
,
461
580
(
2002
).
19.
G. M.
Zaslavsky
,
Hamiltonian Chaos and Fractional Dynamics
(
Oxford University Press
,
New York
,
2005
).
20.
V.
Afraimovich
and
G. M.
Zaslavsky
, “
Fractal and multifractal properties of exit times and Poincaré recurrences
,”
Phys. Rev. E
55
,
5418
5426
(
1997
).
21.
E. G.
Altmann
,
A. E.
Motter
, and
H.
Kantz
, “
Stickiness in mushroom billiards
,”
Chaos
15
,
033105
(
2005
).
22.
H.
Tanaka
and
A.
Shudo
, “
Recurrence time distribution in mushroom billiards with parabolic hat
,”
Phys. Rev. E
74
,
036211
(
2006
).
23.
E. G.
Altmann
,
A. E.
Motter
, and
H.
Kantz
, “
Stickiness in Hamiltonian systems: From sharply divided to hierarchical phase space
,”
Phys. Rev. E
73
,
026207
(
2006
).
24.
R.
Venegeroles
, “
Universality of algebraic laws in Hamiltonian systems
,”
Phys. Rev. Lett.
102
,
064101
(
2009
).
25.
C. V.
Abud
and
R. E.
de Carvalho
, “
Multifractality, stickiness, and recurrence-time statistics
,”
Phys. Rev. E
88
,
042922
(
2013
).
26.
Č.
Lozej
, “
Stickiness in generic low-dimensional Hamiltonian systems: A recurrence-time statistics approach
,”
Phys. Rev. E
101
,
052204
(
2020
).
27.
Y.-C.
Lai
,
M.
Ding
,
C.
Grebogi
, and
R.
Blümel
, “
Algebraic decay and fluctuations of the decay exponent in Hamiltonian systems
,”
Phys. Rev. A
46
,
4661
4669
(
1992
).
28.
E. G.
Altmann
and
T.
Tél
, “
Poincaré recurrences and transient chaos in systems with leaks
,”
Phys. Rev. E
79
,
016204
(
2009
).
29.
V. A.
Avetisov
and
S. K.
Nechaev
, “
Chaotic Hamiltonian systems: Survival probability
,”
Phys. Rev. E
81
,
046211
(
2010
).
30.
C. P.
Dettmann
and
E. D.
Leonel
, “
Escape and transport for an open bouncer: Stretched exponential decays
,”
Phys. D
241
,
403
408
(
2012
).
31.
E. D.
Leonel
and
C. P.
Dettmann
, “
Recurrence of particles in static and time varying oval billiards
,”
Phys. Lett. A
376
,
1669
1674
(
2012
).
32.
A. L. P.
Livorati
,
T.
Kroetz
,
C. P.
Dettmann
,
I. L.
Caldas
, and
E. D.
Leonel
, “
Stickiness in a bouncer model: A slowing mechanism for Fermi acceleration
,”
Phys. Rev. E
86
,
036203
(
2012
).
33.
A. L. P.
Livorati
,
O.
Georgiou
,
C. P.
Dettmann
, and
E. D.
Leonel
, “
Escape through a time-dependent hole in the doubling map
,”
Phys. Rev. E
89
,
052913
(
2014
).
34.
J. A.
Méndez-Bermúdez
,
A. J.
Martínez-Mendoza
,
A. L. P.
Livorati
, and
E. D.
Leonel
, “
Leaking of trajectories from the phase space of discontinuous dynamics
,”
J. Phys. A: Math. Theor.
48
,
405101
(
2015
).
35.
N. B.
de Faria
,
D. S.
Tavares
,
W. C. S.
de Paula
,
E. D.
Leonel
, and
D. G.
Ladeira
, “
Transport of chaotic trajectories from regions distant from or near to structures of regular motion of the Fermi-Ulam model
,”
Phys. Rev. E
94
,
042208
(
2016
).
36.
A. L.
Livorati
,
M. S.
Palmero
,
G.
Díaz-I
,
C. P.
Dettmann
,
I. L.
Caldas
, and
E. D.
Leonel
, “
Investigation of stickiness influence in the anomalous transport and diffusion for a non-dissipative Fermi-Ulam model
,”
Commun. Nonlinear Sci. Numer. Simul.
55
,
225
236
(
2018
).
37.
D.
Borin
,
A. L. P.
Livorati
, and
E. D.
Leonel
, “
An investigation of the survival probability for chaotic diffusion in a family of discrete Hamiltonian mappings
,”
Chaos, Solitons Fractals
175
,
113965
(
2023
).
38.
E. D.
Leonel
,
Scaling Laws in Dynamical Systems
, 1st ed. (
Springer Singapore
,
2021
).
39.
E. D.
Leonel
,
P. V. E.
McClintock
, and
J. K. L.
da Silva
, “
Fermi-Ulam accelerator model under scaling analysis
,”
Phys. Rev. Lett.
93
,
014101
(
2004
).
40.
E. D.
Leonel
, “
Corrugated waveguide under scaling investigation
,”
Phys. Rev. Lett.
98
,
114102
(
2007
).
41.
A. L. P.
Livorati
,
D. G.
Ladeira
, and
E. D.
Leonel
, “
Scaling investigation of Fermi acceleration on a dissipative bouncer model
,”
Phys. Rev. E
78
,
056205
(
2008
).
42.
J. A.
de Oliveira
,
R. A.
Bizão
, and
E. D.
Leonel
, “
Finding critical exponents for two-dimensional Hamiltonian maps
,”
Phys. Rev. E
81
,
046212
(
2010
).
43.
E. D.
Leonel
and
P. V. E.
McClintock
, “
Scaling properties for a classical particle in a time-dependent potential well
,”
Chaos
15
,
033701
(
2005
).
44.
J. A.
de Oliveira
,
L. T.
Montero
,
D. R.
da Costa
,
J. A.
Méndez-Bermúdez
,
R. O.
Medrano-T
, and
E. D.
Leonel
, “
An investigation of the parameter space for a family of dissipative mappings
,”
Chaos
29
,
053114
(
2019
).
45.
E. D.
Leonel
,
J.
Penalva
,
R. M.
Teixeira
,
R. N.
Costa Filho
,
M. R.
Silva
, and
J. A.
de Oliveira
, “
A dynamical phase transition for a family of Hamiltonian mappings: A phenomenological investigation to obtain the critical exponents
,”
Phys. Lett. A
379
,
1808
1815
(
2015
).
46.
J. A.
de Oliveira
,
C. P.
Dettmann
,
D. R.
da Costa
, and
E. D.
Leonel
, “
Scaling invariance of the diffusion coefficient in a family of two-dimensional Hamiltonian mappings
,”
Phys. Rev. E
87
,
062904
(
2013
).
47.
D. F.
Oliveira
,
M.
Robnik
, and
E. D.
Leonel
, “
Statistical properties of a dissipative kicked system: Critical exponents and scaling invariance
,”
Phys. Lett. A
376
,
723
728
(
2012
).
48.
J. A.
Méndez-Bermúdez
,
R.
Aguilar-Sánchez
,
J. M.
Sigarreta
, and
E. D.
Leonel
, “
Scaling properties of the action in the Riemann-Liouville fractional standard map
,”
Phys. Rev. E
109
,
034214
(
2024
).
49.
D.
Borin
, “
Caputo fractional standard map: Scaling invariance analyses
,”
Chaos, Solitons Fractals
181
,
114597
(
2024
).
50.
S.
Tabachnikov
,
Geometry and Billiards
(
American Mathematical Society
,
2005
), Vol. 30.
51.
L. A.
Bunimovich
, “
Mechanisms of chaos in billiards: Dispersing, defocusing and nothing else
,”
Nonlinearity
31
,
R78
(
2018
).
52.
Y. G.
Sinai
, “
Dynamical systems with elastic reflections
,”
Russ. Math. Surv.
25
,
137
(
1970
).
53.
L. A.
Bunimovich
, “
On ergodic properties of certain billiards
,”
Funct. Anal. Appl.
8
,
254
255
(
1974
).
54.
M.
Robnik
, “
Classical dynamics of a family of billiards with analytic boundaries
,”
J. Phys. A: Math. Gen.
16
,
3971
(
1983
).
55.
L. A.
Bunimovich
, “
Mushrooms and other billiards with divided phase space
,”
Chaos
11
,
802
808
(
2001
).
56.
D. R.
da Costa
,
M. S.
Palmero
,
J.
Méndez-Bermúdez
,
K. C.
Iarosz
,
J. D.
Szezech
, Jr.
, and
A. M.
Batista
, “
Tilted-hat mushroom billiards: Web-like hierarchical mixed phase space
,”
Commun. Nonlinear Sci. Numer. Simul.
91
,
105440
(
2020
).
57.
M.
Berry
, “
Quantum chaology, not quantum chaos
,”
Phys. Scr.
40
,
335
(
1989
).
58.
G.
Casati
and
T.
Prosen
, “
The quantum mechanics of chaotic billiards
,”
Phys. D
131
,
293
310
(
1999
).
59.
A. H.
Barnett
and
T.
Betcke
, “
Quantum mushroom billiards
,”
Chaos
17
,
043125
(
2007
).
60.
D. D.
de Menezes
,
M.
Jar e Silva
, and
F. M.
de Aguiar
, “
Numerical experiments on quantum chaotic billiards
,”
Chaos
17
,
023116
(
2007
).
61.
F.
Zanetti
,
E.
Vicentini
, and
M.
da Luz
, “
Eigenstates and scattering solutions for billiard problems: A boundary wall approach
,”
Ann. Phys.
323
,
1644
1676
(
2008
).
62.
M. V.
Deryabin
and
L. D.
Pustyl’nikov
, “
On generalized relativistic billiards in external force fields
,”
Lett. Math. Phys.
63
,
195
207
(
2003
).
63.
M. V.
Deryabin
and
L. D.
Pustyl’nikov
, “
Exponential attractors in generalized relativistic billiards
,”
Commun. Math. Phys.
248
,
527
552
(
2004
).
64.
R. S.
Pinto
and
P. S.
Letelier
, “
Fermi acceleration in driven relativistic billiards
,”
Phys. Lett. A
375
,
3273
3278
(
2011
).
65.
K.-I.
Arita
and
M.
Brack
, “
Anomalous shell effect in the transition from a circular to a triangular billiard
,”
Phys. Rev. E
77
,
056211
(
2008
).
66.
D. R.
da Costa
,
A.
Fujita
,
M. R.
Sales
,
J. D.
Szezech
, and
A. M.
Batista
, “
Dynamical properties for a tunable circular to polygonal billiard
,”
Braz. J. Phys.
52
,
75
(
2022
).
67.
A.
Daza
,
A.
Wagemakers
,
B.
Georgeot
,
D.
Guéry-Odelin
, and
M. A. F.
Sanjuán
, “
Basin entropy: A new tool to analyze uncertainty in dynamical systems
,”
Sci. Rep.
6
,
31416
(
2016
).
68.
A.
Daza
,
B.
Georgeot
,
D.
Guéry-Odelin
,
A.
Wagemakers
, and
M. A. F.
Sanjuán
, “
Chaotic dynamics and fractal structures in experiments with cold atoms
,”
Phys. Rev. A
95
,
013629
(
2017
).
69.
D. R.
da Costa
,
M.
Hansen
,
M. R.
Silva
, and
E. D.
Leonel
, “
Tangent method and some dynamical properties of an oval-like billiard
,”
Int. J. Bifurc. Chaos
32
,
2250052
(
2022
).
70.
For the chosen parameter values, there are only a few very small stability islands within this region (not shown). If a particle happens to fall within one of these small islands, we exclude it from the analysis. This exclusion does not significantly impact the overall behavior of the survival probability, as the number of discarded particles is much smaller than the total number of particles in the ensemble.
71.
M.
Hansen
,
R.
Egydio de Carvalho
, and
E. D.
Leonel
, “
Influence of stability islands in the recurrence of particles in a static oval billiard with holes
,”
Phys. Lett. A
380
,
3634
3639
(
2016
).
72.
C. P.
Dettmann
, “Recent advances in open billiards with some open problems,” in Frontiers in the Study of Chaotic Dynamical Systems with Open Problems (World Scientific, 2011), Chap. 11, pp. 195–218.
73.
M.
Hansen
,
D. R.
da Costa
,
I. L.
Caldas
, and
E. D.
Leonel
, “
Statistical properties for an open oval billiard: An investigation of the escaping basins
,”
Chaos, Solitons Fractals
106
,
355
362
(
2018
).
74.
M.
Mugnaine
,
A. M.
Batista
,
I. L.
Caldas
,
J. D.
Szezech
,
R. E.
de Carvalho
, and
R. L.
Viana
, “
Curry-Yorke route to shearless attractors and coexistence of attractors in dissipative nontwist systems
,”
Chaos
31
,
023125
(
2021
).
75.
M.
Mugnaine
,
A. C.
Mathias
,
M. S.
Santos
,
A. M.
Batista
,
J. D.
Szezech
, and
R. L.
Viana
, “
Dynamical characterization of transport barriers in nontwist Hamiltonian systems
,”
Phys. Rev. E
97
,
012214
(
2018
).
76.
A. C.
Mathias
,
M.
Mugnaine
,
M. S.
Santos
,
J. D.
Szezech
,
I. L.
Caldas
, and
R. L.
Viana
, “
Fractal structures in the parameter space of nontwist area-preserving maps
,”
Phys. Rev. E
100
,
052207
(
2019
).
77.
L. C.
Souza
,
A. C.
Mathias
,
P.
Haerter
, and
R. L.
Viana
, “
Basin entropy and shearless barrier breakup in open non-twist Hamiltonian systems
,”
Entropy
25
,
1142
(
2023
).
78.
A.
Mathias
,
R.
Viana
,
T.
Kroetz
, and
I.
Caldas
, “
Fractal structures in the chaotic motion of charged particles in a magnetized plasma under the influence of drift waves
,”
Phys. A
469
,
681
694
(
2017
).
79.
L. C.
Souza
,
A. C.
Mathias
,
I. L.
Caldas
,
Y.
Elskens
, and
R. L.
Viana
, “
Fractal and Wada escape basins in the chaotic particle drift motion in tokamaks with electrostatic fluctuations
,”
Chaos
33
,
083132
(
2023
).
80.
E. E.
Zotos
, “
An overview of the escape dynamics in the Hénon–Heiles Hamiltonian system
,”
Meccanica
52
,
2615
2630
(
2017
).
81.
A. R.
Nieto
,
E. E.
Zotos
,
J. M.
Seoane
, and
M. A. F.
Sanjuán
, “
Measuring the transition between nonhyperbolic and hyperbolic regimes in open Hamiltonian systems
,”
Nonlinear Dyn.
99
,
3029
3039
(
2020
).
82.
J. D.
Bernal
,
J. M.
Seoane
, and
M. A. F.
Sanjuán
, “
Uncertainty dimension and basin entropy in relativistic chaotic scattering
,”
Phys. Rev. E
97
,
042214
(
2018
).
83.
A.
Puy
,
A.
Daza
,
A.
Wagemakers
, and
M. A.
Sanjuán
, “
A test for fractal boundaries based on the basin entropy
,”
Commun. Nonlinear Sci. Numer. Simul.
95
,
105588
(
2021
).
84.
A.
Gusso
and
L. E.
de Mello
, “
Fractal dimension of basin boundaries calculated using the basin entropy
,”
Chaos, Solitons Fractals
153
,
111532
(
2021
).
85.
A.
Daza
,
A.
Wagemakers
, and
M. A. F.
Sanjuán
, “
Unpredictability and basin entropy
,”
Europhys. Lett.
141
,
43001
(
2023
).
86.
J.
Aguirre
and
M. A. F.
Sanjuán
, “
Limit of small exits in open Hamiltonian systems
,”
Phys. Rev. E
67
,
056201
(
2003
).
87.
A.
Daza
,
A.
Wagemakers
, and
M. A. F.
Sanjuán
, “
Classifying basins of attraction using the basin entropy
,”
Chaos, Solitons Fractals
159
,
112112
(
2022
).
88.
M.
Rolim Sales
, “mrolims/tunable-billiard: v1.0.1,” (2024), Zenodo; see http://dx.doi.org/10.5281/zenodo.11495600.
89.
M.
Rolim Sales
, “mrolims/tunable-billiard,” (2024), GitHub; see https://github.com/mrolims/tunable-billiard.git.
You do not currently have access to this content.