Inverse stochastic resonance (ISR) is a counterintuitive phenomenon where noise reduces the oscillation frequency of an oscillator to a minimum occurring at an intermediate noise intensity, and sometimes even to the complete absence of oscillations. In neuroscience, ISR was first experimentally verified with cerebellar Purkinje neurons [Buchin et al., PLOS Comput. Biol. 12, e1005000 (2016)]. These experiments showed that ISR enables a locally optimal information transfer between the input and output spike train of neurons. Subsequent studies have further demonstrated the efficiency of information processing and transfer in neural networks with small-world network topology. We have conducted a numerical investigation into the impact of adaptivity on ISR in a small-world network of noisy FitzHugh–Nagumo (FHN) neurons, operating in a bi-metastable regime consisting of a metastable fixed point and a metastable limit cycle. Our results show that the degree of ISR is highly dependent on the value of the FHN model’s timescale separation parameter ε. The network structure undergoes dynamic adaptation via mechanisms of either spike-time-dependent plasticity (STDP) with potentiation-/depression-domination parameter P or homeostatic structural plasticity (HSP) with rewiring frequency F. We demonstrate that both STDP and HSP amplify the effect of ISR when ε lies within the bi-stability region of FHN neurons. Specifically, at larger values of ε within the bi-stability regime, higher rewiring frequencies F are observed to enhance ISR at intermediate (weak) synaptic noise intensities, while values of P consistent with depression-domination (potentiation–domination) consistently enhance (deteriorate) ISR. Moreover, although STDP and HSP control parameters may jointly enhance ISR, P has a greater impact on improving ISR compared to F. Our findings inform future ISR enhancement strategies in noisy artificial neural circuits, aiming to optimize local information transfer between input and output spike trains in neuromorphic systems and prompt venues for experiments in neural networks.

1.
A.
Longtin
, “
Stochastic resonance in neuron models
,”
J. Stat. Phys.
70
,
309
327
(
1993
).
2.
D.
Nozaki
,
D. J.
Mar
,
P.
Grigg
, and
J. J.
Collins
, “
Effects of colored noise on stochastic resonance in sensory neurons
,”
Phys. Rev. Lett.
82
,
2402
(
1999
).
3.
A. S.
Pikovsky
and
J.
Kurths
, “
Coherence resonance in a noise-driven excitable system
,”
Phys. Rev. Lett.
78
,
775
(
1997
).
4.
A. N.
Pisarchik
and
A. E.
Hramov
, “
Coherence resonance in neural networks: Theory and experiments
,”
Phys. Rep.
1000
,
1
57
(
2023
).
5.
B. S.
Gutkin
,
J.
Jost
, and
H. C.
Tuckwell
, “
Inhibition of rhythmic neural spiking by noise: The occurrence of a minimum in activity with increasing noise
,”
Naturwissenschaften
96
,
1091
1097
(
2009
).
6.
H. C.
Tuckwell
,
J.
Jost
, and
B. S.
Gutkin
, “
Inhibition and modulation of rhythmic neuronal spiking by noise
,”
Phys. Rev. E
80
,
031907
(
2009
).
7.
A.
Buchin
,
S.
Rieubland
,
M.
Häusser
,
B. S.
Gutkin
, and
A.
Roth
, “
Inverse stochastic resonance in cerebellar Purkinje cells
,”
PLoS Comput. Biol.
12
,
e1005000
(
2016
).
8.
J.-H.
Huh
, “
Inverse stochastic resonance in electroconvection by multiplicative colored noise
,”
Phys. Rev. E
94
,
052702
(
2016
).
9.
J.-H.
Huh
,
M.
Shiomi
, and
N.
Miyagawa
, “
Control of stochastic and inverse stochastic resonances in a liquid-crystal electroconvection system using amplitude and phase noises
,”
Sci. Rep.
13
,
16883
(
2023
).
10.
I.
Bačić
,
V.
Klinshov
,
V.
Nekorkin
,
M.
Perc
, and
I.
Franović
, “
Inverse stochastic resonance in a system of excitable active rotators with adaptive coupling
,”
Europhys. Lett.
124
,
40004
(
2018
).
11.
I.
Bačić
and
I.
Franović
, “
Two paradigmatic scenarios for inverse stochastic resonance
,”
Chaos
30
,
033123
(
2020
).
12.
P.
Hänggi
, “
Stochastic resonance in biology how noise can enhance detection of weak signals and help improve biological information processing
,”
ChemPhysChem
3
,
285
290
(
2002
).
13.
B.
Vázquez-Rodríguez
,
A.
Avena-Koenigsberger
,
O.
Sporns
,
A.
Griffa
,
P.
Hagmann
, and
H.
Larralde
, “
Stochastic resonance at criticality in a network model of the human cortex
,”
Sci. Rep.
7
,
1
12
(
2017
).
14.
B. J.
Gluckman
,
P.
So
,
T. I.
Netoff
,
M. L.
Spano
, and
S. J.
Schiff
, “
Stochastic resonance in mammalian neuronal networks
,”
Chaos
8
,
588
598
(
1998
).
15.
A.
Bulsara
,
E.
Jacobs
,
T.
Zhou
,
F.
Moss
, and
L.
Kiss
, “
Stochastic resonance in a single neuron model: Theory and analog simulation
,”
J. Theor. Biol.
152
,
531
555
(
1991
).
16.
D.
Paydarfar
,
D. B.
Forger
, and
J. R.
Clay
, “
Noisy inputs and the induction of on–off switching behavior in a neuronal pacemaker
,”
J. Neurophysiol.
96
,
3338
3348
(
2006
).
17.
M.
Uzuntarla
,
J. R.
Cressman
,
M.
Ozer
, and
E.
Barreto
, “
Dynamical structure underlying inverse stochastic resonance and its implications
,”
Phys. Rev. E
88
,
042712
(
2013
).
18.
M.
Uzuntarla
,
J. J.
Torres
,
P.
So
,
M.
Ozer
, and
E.
Barreto
, “
Double inverse stochastic resonance with dynamic synapses
,”
Phys. Rev. E
95
,
012404
(
2017
).
19.
B. A.
Schmerl
and
M. D.
McDonnell
, “
Channel-noise-induced stochastic facilitation in an auditory brainstem neuron model
,”
Phys. Rev. E
88
,
052722
(
2013
).
20.
V. V.
Vyazovskiy
and
K. D.
Harris
, “
Sleep and the single neuron: The role of global slow oscillations in individual cell rest
,”
Nat. Rev. Neurosci.
14
,
443
451
(
2013
).
21.
A.
Buchin
, “Modeling of single cell and network phenomena of the nervous system: Ion dynamics during epileptic oscillations and inverse stochastic resonance,” Ph.D. thesis (Ecole Normale Supérieure, Paris, 2015).
22.
J. D.
Touboul
,
A. C.
Staver
, and
S. A.
Levin
, “
On the complex dynamics of savanna landscapes
,”
Proc. Natl. Acad. Sci. U.S.A.
115
,
E1336
E1345
(
2018
).
23.
J. J.
Torres
,
M.
Uzuntarla
, and
J.
Marro
, “
A theoretical description of inverse stochastic resonance in nature
,”
Commun. Nonlinear Sci. Numer. Simul.
80
,
104975
(
2020
).
24.
M.
Uzuntarla
,
E.
Barreto
, and
J. J.
Torres
, “
Inverse stochastic resonance in networks of spiking neurons
,”
PLoS Comput. Biol.
13
,
e1005646
(
2017
).
25.
I.
Franović
,
O. E.
Omel’chenko
, and
M.
Wolfrum
, “
Phase-sensitive excitability of a limit cycle
,”
Chaos
28
,
071105
(
2018
).
26.
J.
Zhu
, “
Unified mechanism of inverse stochastic resonance for monostability and bistability in Hindmarsh–Rose neuron
,”
Chaos
31
,
033119
(
2021
).
27.
D.
Guo
, “
Inhibition of rhythmic spiking by colored noise in neural systems
,”
Cognit. Neurodyn.
5
,
293
300
(
2011
).
28.
H. C.
Tuckwell
and
J.
Jost
, “
The effects of various spatial distributions of weak noise on rhythmic spiking
,”
J. Comput. Neurosci.
30
,
361
371
(
2011
).
29.
G.
Wang
,
Y.
Wu
,
F.
Xiao
,
Z.
Ye
, and
Y.
Jia
, “
Non-gaussian noise and autapse-induced inverse stochastic resonance in bistable Izhikevich neural system under electromagnetic induction
,”
Physica A
598
,
127274
(
2022
).
30.
L.
Lu
,
Y.
Jia
,
M.
Ge
,
Y.
Xu
, and
A.
Li
, “
Inverse stochastic resonance in Hodgkin–Huxley neural system driven by gaussian and non-gaussian colored noises
,”
Nonlinear Dyn.
100
,
877
889
(
2020
).
31.
Y.
Zhao
and
D.
Li
, “
Levy noise-induced inverse stochastic resonance in a single neuron
,”
Mod. Phys. Lett. B
33
,
1950252
(
2019
).
32.
C.
Liu
,
D.
Yu
,
T.
Li
,
X.
Wang
,
Y.
Xie
, and
Y.
Jia
, “
Effects of neuronal morphology and time delay on inverse stochastic resonance in two-compartment neuron model
,”
Phys. Lett. A
493
,
129268
(
2024
).
33.
N.
Zhang
,
D.
Li
, and
Y.
Xing
, “
Autapse-induced multiple inverse stochastic resonance in a neural system
,”
Eur. Phys. J. B
94
,
1
11
(
2021
).
34.
Z.
Ye
,
Y.
Yang
, and
Y.
Jia
, “
Inverse stochastic resonance in Izhikevich neural motifs driven by Gaussian colored noise under electromagnetic induction
,”
Int. J. Mod. Phys. B
37
,
2350049
(
2023
).
35.
M.
Tsodyks
,
K.
Pawelzik
, and
H.
Markram
, “
Neural networks with dynamic synapses
,”
Neural Comput.
10
,
821
835
(
1998
).
36.
S. H.
Bennett
,
A. J.
Kirby
, and
G. T.
Finnerty
, “
Rewiring the connectome: Evidence and effects
,”
Neurosci. Biobehav. Rev.
88
,
51
62
(
2018
).
37.
A.
Van Ooyen
and
M.
Butz-Ostendorf
,
The Rewiring Brain: A Computational Approach to Structural Plasticity in the Adult Brain
(
Academic Press
,
2017
).
38.
M. E.
Yamakou
and
C.
Kuehn
, “
Combined effects of spike-timing-dependent plasticity and homeostatic structural plasticity on coherence resonance
,”
Phys. Rev. E
107
,
044302
(
2023
).
39.
W.
Gerstner
,
R.
Kempter
,
J. L.
Van Hemmen
, and
H.
Wagner
, “
A neuronal learning rule for sub-millisecond temporal coding
,”
Nature
383
,
76
78
(
1996
).
40.
H.
Markram
,
J.
Lübke
,
M.
Frotscher
, and
B.
Sakmann
, “
Regulation of synaptic efficacy by coincidence of postsynaptic APS and EPSPS
,”
Science
275
,
213
215
(
1997
).
41.
J. M.
Shine
,
P. G.
Bissett
,
P. T.
Bell
,
O.
Koyejo
,
J. H.
Balsters
,
K. J.
Gorgolewski
,
C. A.
Moodie
, and
R. A.
Poldrack
, “
The dynamics of functional brain networks: Integrated network states during cognitive task performance
,”
Neuron
92
,
544
554
(
2016
).
42.
W. T.
Greenough
and
C. H.
Bailey
, “
The anatomy of a memory: Convergence of results across a diversity of tests
,”
Trends Neurosci.
11
,
142
147
(
1988
).
43.
C. C.
Hilgetag
and
A.
Goulas
,
Is the brain really a small-world network?
,”
Brain Struct. Funct.
221
,
2361
2366
(
2016
).
44.
M.
Valencia
,
J.
Martinerie
,
S.
Dupont
, and
M.
Chavez
, “
Dynamic small-world behavior in functional brain networks unveiled by an event-related networks approach
,”
Phys. Rev. E
77
,
050905
(
2008
).
45.
M.
Butz
,
I. D.
Steenbuck
, and
A.
van Ooyen
, “
Homeostatic structural plasticity increases the efficiency of small-world networks
,”
Front. Synaptic Neurosci.
6
,
7
(
2014
).
46.
G. G.
Turrigiano
and
S. B.
Nelson
, “
Homeostatic plasticity in the developing nervous system
,”
Nat. Rev. Neurosci.
5
,
97
107
(
2004
).
47.
R.
Fitzhugh
, “
Thresholds and plateaus in the Hodgkin-Huxley nerve equations
,”
J. Gen. Physiol.
43
,
867
896
(
1960
).
48.
R.
FitzHugh
, “
Impulses and physiological states in theoretical models of nerve membrane
,”
Biophys. J.
1
,
445
466
(
1961
).
49.
J.
Nagumo
,
S.
Arimoto
, and
S.
Yoshizawa
, “
An active pulse transmission line simulating nerve axon
,”
Proc. IRE
50
,
2061
2070
(
1962
).
50.
D. J.
Higham
, “
An algorithmic introduction to numerical simulation of stochastic differential equations
,”
SIAM Rev.
43
,
525
546
(
2001
).
51.
D. S.
Bassett
and
E.
Bullmore
, “
Small-world brain networks
,”
Neuroscientist
12
,
512
523
(
2006
).
52.
D. S.
Bassett
,
A.
Meyer-Lindenberg
,
S.
Achard
,
T.
Duke
, and
E.
Bullmore
, “
Adaptive reconfiguration of fractal small-world human brain functional networks
,”
Proc. Natl. Acad. Sci. U.S.A.
103
,
19518
19523
(
2006
).
53.
X.
Liao
,
A. V.
Vasilakos
, and
Y.
He
, “
Small-world human brain networks: Perspectives and challenges
,”
Neurosci. Biobehav. Rev.
77
,
286
300
(
2017
).
54.
S. F.
Muldoon
,
E. W.
Bridgeford
, and
D. S.
Bassett
, “
Small-world propensity and weighted brain networks
,”
Sci. Rep.
6
,
1
13
(
2016
).
55.
D. J.
Watts
and
S. H.
Strogatz
, “
Collective dynamics of ‘small-world’ networks
,”
Nature
393
,
440
442
(
1998
).
56.
S. H.
Strogatz
, “
Exploring complex networks
,”
Nature
410
,
268
276
(
2001
).
57.
H.
Yu
,
X.
Guo
,
J.
Wang
,
B.
Deng
, and
X.
Wei
, “
Spike coherence and synchronization on Newman-Watts small-world neuronal networks modulated by spike-timing-dependent plasticity
,”
Physica A
419
,
307
317
(
2015
).
58.
A.
Morrison
,
A.
Aertsen
, and
M.
Diesmann
, “
Spike-timing-dependent plasticity in balanced random networks
,”
Neural Comput.
19
,
1437
1467
(
2007
).
59.
H.
Xie
,
Y.
Gong
, and
B.
Wang
, “
Spike-timing-dependent plasticity optimized coherence resonance and synchronization transitions by autaptic delay in adaptive scale-free neuronal networks
,”
Chaos, Solitons Fractals
108
,
1
7
(
2018
).
60.
G.-Q.
Bi
and
M.-M.
Poo
, “
Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type
,”
J. Neurosci.
18
,
10464
10472
(
1998
).
61.
D. E.
Feldman
and
M.
Brecht
, “
Map plasticity in somatosensory cortex
,”
Science
310
,
810
815
(
2005
).
62.
S.
Song
,
K. D.
Miller
, and
L. F.
Abbott
, “
Competitive Hebbian learning through spike-timing-dependent synaptic plasticity
,”
Nat. Neurosci.
3
,
919
926
(
2000
).
63.
M. E.
Yamakou
,
M.
Desroches
, and
S.
Rodrigues
, “
Synchronization in STDP-driven memristive neural networks with time-varying topology
,”
J. Biol. Phys.
49
,
483
507
(
2023
).
64.
We can use large rewiring frequencies F, even exceeding the spiking frequency, because our study employs an HSP rule independent of spike activity and relies solely on network topology. These large F values are numerically necessary to ensure the network has a sufficiently high probability of rewiring its synapses. Furthermore, note that large rewiring frequencies such as F = 533 Hz do not mean that the real brain rewires at such a high frequency. F is just a proxy of the actual rewiring frequency of synapses in a real brain—higher (lower) F indicate higher (lower) rewiring frequencies in the brain, aiding in qualitative understanding.
65.
Z.
Brzosko
,
S. B.
Mierau
, and
O.
Paulsen
, “
Neuromodulation of spike-timing-dependent plasticity: Past, present, and future
,”
Neuron
103
,
563
581
(
2019
).
66.
W. M.
Pardridge
, “
Drug transport across the blood–brain barrier
,”
J. Cereb. Blood Flow Metab.
32
,
1959
1972
(
2012
).
67.
A. M.
Packer
,
B.
Roska
, and
M.
Häusser
, “
Targeting neurons and photons for optogenetics
,”
Nat. Neurosci.
16
,
805
815
(
2013
).
You do not currently have access to this content.