This study investigates ultra-low-energy defibrillation protocols using a simple two-dimensional model of cardiac tissue. We find that, rather counter-intuitively, a single, properly timed, biphasic pulse can be more effective in defibrillating the tissue than low energy antitachycardia pacing (LEAP), which employs a sequence of such pulses, succeeding where the latter approach fails. Furthermore, we show that, with the help of adjoint optimization, it is possible to reduce the energy required for defibrillation even further, making it three orders of magnitude lower than that required by LEAP. Finally, we establish that this dramatic reduction is achieved through exploiting the sensitivity of the dynamics in vulnerable windows to promote the annihilation of pairs of nearby phase singularities.

1.
C. X.
Wong
,
A.
Brown
,
D. H.
Lau
,
S. S.
Chugh
,
C. M.
Albert
,
J. M.
Kalman
, and
P.
Sanders
, “
Epidemiology of sudden cardiac death: Global and regional perspectives
,”
Heart, Lung Circ.
28
,
6
14
(
2019
).
2.
C. W.
Tsao
,
A. W.
Aday
,
Z. I.
Almarzooq
,
A.
Alonso
,
A. Z.
Beaton
,
M. S.
Bittencourt
,
A. K.
Boehme
,
A. E.
Buxton
,
A. P.
Carson
,
Y.
Commodore-Mensah
et al., “
Heart disease and stroke statistics–2022 update: A report from the American Heart Association
,”
Circulation
145
,
e153
e639
(
2022
).
3.
T. M.
Munger
,
L.-Q.
Wu
, and
W. K.
Shen
, “
Atrial fibrillation
,”
J. Biomed. Res.
28
,
1
17
(
2014
).
4.
S. S.
Chugh
,
R.
Havmoeller
,
K.
Narayanan
,
D.
Singh
,
M.
Rienstra
,
E. J.
Benjamin
,
R. F.
Gillum
,
Y.-H.
Kim
,
J. H.
McAnulty Jr
,
Z.-J.
Zheng
et al., “
Worldwide epidemiology of atrial fibrillation: A global burden of disease 2010 study
,”
Circulation
129
,
837
847
(
2014
).
5.
R.
Passman
and
A.
Kadish
, “
Shouldn’t everyone have an implantable cardioverter-defibrillator?
,”
Circulation
120
(
22
),
2166
2167
(
2009
).
6.
C. F.
Babbs
,
W. A.
Tacker
,
J. F.
VanVleet
,
J. D.
Bourland
, and
L. A.
Geddes
, “
Therapeutic indices for transchest defibrillator shocks: Effective, damaging, and lethal electrical doses
,”
Am. Heart J.
99
,
734
738
(
1980
).
7.
A. E.
Epstein
,
P. G.
Anderson
,
G. N.
Kay
,
S. M.
Dailey
,
V. J.
Plumb
, and
R. B.
Shepard
, “
Gross and microscopic changes associated with a nonthoracotomy implantable cardioverter defibrillator
,”
Pacing Clin. Electrophysiol.
15
,
382
386
(
1992
).
8.
S. F.
Sears
,
J. D.
Hauf
,
K.
Kirian
,
G.
Hazelton
, and
J. B.
Conti
, “
Posttraumatic stress and the implantable cardioverter-defibrillator patient: What the electrophysiologist needs to know
,”
Circ.: Arrhythmia Electrophysiol.
4
,
242
250
(
2011
).
9.
F.
Jacq
,
G.
Foulldrin
,
A.
Savouré
,
F.
Anselme
,
A.
Baguelin-Pinaud
,
A.
Cribier
, and
F.
Thibaut
, “
A comparison of anxiety, depression and quality of life between device shock and nonshock groups in implantable cardioverter defibrillator recipients
,”
Gen. Hosp. Psychiatry
31
,
266
273
(
2009
).
10.
K. I.
Agladze
,
V. A.
Davydov
, and
A. S.
Mikhailov
, “
Observation of a helical-wave resonance in an excitable distributed medium
,”
JETP Lett.
45
,
767
770
(
1987
).
11.
V.
Biktashev
and
A.
Holden
, “
Design principles of a low voltage cardiac defibrillator based on the effect of feedback resonant drift
,”
J. Theor. Biol.
169
,
101
112
(
1994
).
12.
V.
Biktashev
and
A.
Holden
, “
Resonant drift of autowave vortices in two dimensions and the effects of boundaries and inhomogeneities
,”
Chaos, Solitons Fractals
5
,
575
622
(
1995
).
13.
S.
Luther
,
F. H.
Fenton
,
B. G.
Kornreich
,
A.
Squires
,
P.
Bittihn
,
D.
Hornung
,
M.
Zabel
,
J.
Flanders
,
A.
Gladuli
,
L.
Campoy
,
E. M.
Cherry
,
G.
Luther
,
G.
Hasenfuss
,
V. I.
Krinsky
,
A.
Pumir
,
R. F.
Gilmour
, and
E.
Bodenschatz
, “
Low-energy control of electrical turbulence in the heart
,”
Nature
475
,
235
239
(
2011
).
14.
P.
Buran
,
M.
Bär
,
S.
Alonso
, and
T.
Niedermayer
, “
Control of electrical turbulence by periodic excitation of cardiac tissue
,”
Chaos
27
,
113110
(
2017
).
15.
Y. C.
Ji
,
I.
Uzelac
,
N.
Otani
,
S.
Luther
,
R. F.
Gilmour Jr
,
E. M.
Cherry
, and
F. H.
Fenton
, “
Synchronization as a mechanism for low-energy anti-fibrillation pacing
,”
Heart Rhythm
14
,
1254
1262
(
2017
).
16.
T.
Lilienkamp
,
U.
Parlitz
, and
S.
Luther
, “
Taming cardiac arrhythmias: Terminating spiral wave chaos by adaptive deceleration pacing
,”
Chaos
32
,
121105
(
2022
).
17.
D.
Wilson
and
J.
Moehlis
, “
Toward a more efficient implementation of antifibrillation pacing
,”
PLoS One
11
,
e0158239
(
2016
).
18.
F. S.
Ng
,
O.
Toman
,
J.
Petru
,
P.
Peichl
,
R. A.
Winkle
,
V. Y.
Reddy
,
P.
Neuzil
,
R. H.
Mead
,
N. A.
Qureshi
,
Z. I.
Whinnett
et al., “
Novel low-voltage multipulse therapy to terminate atrial fibrillation
,”
Clin. Electrophysiol.
7
,
988
999
(
2021
).
19.
N.
DeTal
,
A.
Kaboudian
, and
F. H.
Fenton
, “
Terminating spiral waves with a single designed stimulus: Teleportation as the mechanism for defibrillation
,”
Proc. Natl. Acad. Sci.
119
,
e2117568119
(
2022
).
20.
M. R.
Gold
,
N.
Sulke
,
D. S.
Schwartzman
,
R.
Mehra
, and
D. E.
Euler
, “
Clinical experience with a dual-chamber implantable cardioverter defibrillator to treat atrial tachyarrhythmias
,”
J. Cardiovasc. Electrophysiol.
12
,
1247
1253
(
2001
).
21.
F. M.
Merchant
,
T.
Quest
,
A. R.
Leon
, and
M. F.
El-Chami
, “
Implantable cardioverter-defibrillators at end of battery life: Opportunities for risk (re)-stratification in ICD recipients
,”
J. Am. Coll. Cardiol.
67
,
435
444
(
2016
).
22.
J.
Bragard
,
A.
Simic
,
J.
Elorza
,
R. O.
Grigoriev
,
E. M.
Cherry
,
R. F.
Gilmour
,
N. F.
Otani
, and
F. H.
Fenton
, “
Shock-induced termination of reentrant cardiac arrhythmias: Comparing monophasic and biphasic shock protocols
,”
Chaos
23
,
043119
(
2013
).
23.
N.
Chamakuri
,
K.
Kunisch
, and
G.
Plank
, “
Application of optimal control to the cardiac defibrillation problem using a physiological model of cellular dynamics
,”
Appl. Numer. Math.
95
,
130
139
(
2015
).
24.
M.
Aron
,
T.
Lilienkamp
,
S.
Luther
, and
U.
Parlitz
, “
Optimising low-energy defibrillation in 2D cardiac tissue with a genetic algorithm
,”
Front. Netw. Physiol.
3
,
1172454
(
2023
).
25.
A.
Pumir
and
V.
Krinsky
, “
Unpinning of a rotating wave in cardiac muscle by an electric field
,”
J. Theor. Biol.
199
,
311
319
(
1999
).
26.
R.-E.
Plessix
, “
A review of the adjoint-state method for computing the gradient of a functional with geophysical applications
,”
Geophys. J. Int.
167
,
495
503
(
2006
).
27.
C. C. T.
Pringle
and
R. R.
Kerswell
, “
Using nonlinear transient growth to construct the minimal seed for shear flow turbulence
,”
Phys. Rev. Lett.
105
,
154502
(
2010
).
28.
M. J.
Krause
,
G.
Thäter
, and
V.
Heuveline
, “
Adjoint-based fluid flow control and optimisation with lattice Boltzmann methods
,”
Comput. Math. Appl.
65
,
945
960
(
2013
).
29.
R.
Nies
,
E. J.
Paul
,
S. R.
Hudson
, and
A.
Bhattacharjee
, “
Adjoint methods for quasi-symmetry of vacuum fields on a surface
,”
J. Plasma Phys.
88
,
905880106
(
2022
).
30.
F.
Fenton
and
A.
Karma
, “
Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation
,”
Chaos
8
,
20
47
(
1998
).
31.
P.
Buran
,
T.
Niedermayer
, and
M.
Bär
, “Mechanism of defibrillation of cardiac tissue by periodic low-energy pacing,” bioRxiv 2023-03 (2023).
32.
T. M.
Schneider
,
B.
Eckhardt
, and
J. A.
Yorke
, “
Turbulence transition and the edge of chaos in pipe flow
,”
Phys. Rev. Lett.
99
,
034502
(
2007
).
33.
J.
Steyer
,
T.
Lilienkamp
,
S.
Luther
, and
U.
Parlitz
, “
The role of pulse timing in cardiac defibrillation
,”
Front. Netw. Physiol.
2
,
1007585
(
2023
).
34.
X.
Liu
,
W.
Tao
, and
Z.
Pan
, “
A convergence analysis of Nesterov’s accelerated gradient method in training deep linear neural networks
,”
Inf. Sci.
612
,
898
925
(
2022
).
35.
W.
Su
,
S.
Boyd
, and
E. J.
Candès
, “
A differential equation for modeling Nesterov’s accelerated gradient method: Theory and insights
,”
J. Mach. Learn. Res.
17
,
1
43
(
2016
).
36.
T.
Lilienkamp
and
U.
Parlitz
, “
Terminating transient chaos in spatially extended systems
,”
Chaos
30
,
051108
(
2020
).
37.
D. R.
Gurevich
and
R. O.
Grigoriev
, “
Robust approach for rotor mapping in cardiac tissue
,”
Chaos
29
,
053101
(
2019
).
38.
C. F.
Starmer
,
V. N.
Biktashev
,
D. N.
Romashko
,
M. R.
Stepanov
,
O. N.
Makarova
, and
V. I.
Krinsky
, “
Vulnerability in an excitable medium: Analytical and numerical studies of initiating unidirectional propagation
,”
Biophys. J.
65
,
1775
1787
(
1993
).
39.
C. F.
Starmer
, “
The cardiac vulnerable period and reentrant arrhythmias: Targets of anti-and proarrhythmic processes
,”
Pacing Clin. Electrophysiol.
20
,
445
454
(
1997
).
40.
V.
Biktashev
and
A.
Holden
, “
Reentrant waves and their elimination in a model of mammalian ventricular tissue
,”
Chaos
8
,
48
56
(
1998
).
41.
Y.
Yamanouchi
,
Y.
Cheng
,
P. J.
Tchou
, and
I. R.
Efimov
, “
The mechanisms of the vulnerable window: The role of virtual electrodes and shock polarity
,”
Can. J. Physiol. Pharmacol.
79
,
25
33
(
2001
).
42.
C. D.
Marcotte
and
R. O.
Grigoriev
, “
Dynamical mechanism of atrial fibrillation: A topological approach
,”
Chaos
27
,
093936
(
2017
).
43.
The CHAOS lab at Georgia Tech
, see https://chaos.gatech.edu/NGL2.0/2D-3V-Model/ for “A WebGL solver for the Fenton-Karma model” (accessed 16 May 2024).
44.
R. G.
Parr
and
W.
Yang
,
Density-Functional Theory of Atoms and Molecules
(
Oxford
,
New York
,
1989
).
45.
J. W.
Thomas
,
Numerical Partial Differential Equations: Finite Difference Methods
(
Springer
,
New York
,
1995
).
46.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes in C: The Art of Scientific Computing
(
Cambridge University Press
,
Cambridge
,
1992
).
You do not currently have access to this content.