Influence spread analysis, a critical component of social network studies, focuses on the patterns and effects of information dissemination among interconnected entities. The core of influence spread analysis is to identify influential nodes that involve two distinct aspects: influence maximization (IM) and influence blocking maximization (IBM). However, when IM and IBM occur simultaneously, identifying influential nodes becomes an intricate decision-making challenge. This study addresses identifying influential nodes in social networks through an attack–defense game perspective, where an attacker maximizes influence and a defender minimizes it. We first develop a two-player static zero-sum game model considering resource constraints. Based on the equilibrium strategy of this game, we redefine the concept of influential nodes from various viewpoints. Extensive experiments on synthetic and real-world networks show that, in most cases, the defender preferentially defends critical nodes, while the attacker adopts the decentralized strategy. Only when resources are unevenly matched do both players tend to adopt centralized strategies. This study expands the connotation of influential nodes and provides a novel paradigm for the social network analysis with significant potential applications.

1.
R. M.
Bond
,
C. J.
Fariss
,
J. J.
Jones
,
A. D.
Kramer
,
C.
Marlow
,
J. E.
Settle
, and
J. H.
Fowler
, “
A 61-million-person experiment in social influence and political mobilization
,”
Nature
489
,
295
298
(
2012
).
2.
Y.
Hu
,
S.
Ji
,
Y.
Jin
,
L.
Feng
,
H. E.
Stanley
, and
S.
Havlin
, “
Local structure can identify and quantify influential global spreaders in large scale social networks
,”
Proc. Natl. Acad. Sci. U.S.A.
115
,
7468
7472
(
2018
).
3.
O.
Artime
,
M.
Grassia
,
M.
De Domenico
,
J. P.
Gleeson
,
H. A.
Makse
,
G.
Mangioni
,
M.
Perc
, and
F.
Radicchi
, “
Robustness and resilience of complex networks
,”
Nat. Rev. Phys.
6
,
114
131
(
2024
).
4.
D.
Brockmann
and
D.
Helbing
, “
The hidden geometry of complex, network-driven contagion phenomena
,”
Science
342
,
1337
1342
(
2013
).
5.
P.
Ji
,
J.
Ye
,
Y.
Mu
,
W.
Lin
,
Y.
Tian
,
C.
Hens
,
M.
Perc
,
Y.
Tang
,
J.
Sun
, and
J.
Kurths
, “
Signal propagation in complex networks
,”
Phys. Rep.
1017
,
1
96
(
2023
).
6.
J.
Shang
,
S.
Zhou
,
X.
Li
,
L.
Liu
, and
H.
Wu
, “
Cofim: A community-based framework for influence maximization on large-scale networks
,”
Knowledge-Based Syst.
117
,
88
100
(
2017
).
7.
Y.
Li
,
J.
Fan
,
Y.
Wang
, and
K.-L.
Tan
, “
Influence maximization on social graphs: A survey
,”
IEEE Trans. Knowl. Data Eng.
30
,
1852
1872
(
2018
).
8.
Z.
Zhao
,
C.
Li
,
X.
Zhang
,
F.
Chiclana
, and
E. H.
Viedma
, “
An incremental method to detect communities in dynamic evolving social networks
,”
Knowledge-Based Syst.
163
,
404
415
(
2019
).
9.
T.
Zhou
,
J.
Ren
,
M.
Medo
, and
Y.-C.
Zhang
, “
Bipartite network projection and personal recommendation
,”
Phys. Rev. E
76
,
046115
(
2007
).
10.
L.
Yang
,
Z.
Li
, and
A.
Giua
, “
Containment of rumor spread in complex social networks
,”
Inf. Sci.
506
,
113
130
(
2020
).
11.
L.
Wu
,
J.
Li
,
P.
Sun
,
R.
Hong
,
Y.
Ge
, and
M.
Wang
, “
Diffnet++: A neural influence and interest diffusion network for social recommendation
,”
IEEE Trans. Knowl. Data Eng.
34
,
4753
4766
(
2020
).
12.
R.
Pastor-Satorras
and
A.
Vespignani
, “
Epidemic spreading in scale-free networks
,”
Phys. Rev. Lett.
86
,
3200
(
2001
).
13.
S. M.
Moghadas
,
M. C.
Fitzpatrick
,
P.
Sah
,
A.
Pandey
,
A.
Shoukat
,
B. H.
Singer
, and
A. P.
Galvani
, “
The implications of silent transmission for the control of COVID-19 outbreaks
,”
Proc. Natl. Acad. Sci. U.S.A.
117
,
17513
17515
(
2020
).
14.
R.
Cohen
,
K.
Erez
,
D.
Ben-Avraham
, and
S.
Havlin
, “
Breakdown of the internet under intentional attack
,”
Phys. Rev. Lett.
86
,
3682
(
2001
).
15.
W.
Ju
,
L.
Chen
,
B.
Li
,
Y.
Chen
, and
X.
Sun
, “
Node deletion-based algorithm for blocking maximizing on negative influence from uncertain sources
,”
Knowledge-Based Syst.
231
,
107451
(
2021
).
16.
P.
Wu
and
L.
Pan
, “
Scalable influence blocking maximization in social networks under competitive independent cascade models
,”
Comput. Netw.
123
,
38
50
(
2017
).
17.
S.
Aral
and
P. S.
Dhillon
, “
Social influence maximization under empirical influence models
,”
Nat. Hum. Behav.
2
,
375
382
(
2018
).
18.
T.
Parmer
,
L. M.
Rocha
, and
F.
Radicchi
, “
Influence maximization in Boolean networks
,”
Nat. Commun.
13
,
3457
(
2022
).
19.
B.-L.
Chen
,
W.-X.
Jiang
,
Y.-X.
Chen
,
L.
Chen
,
R.-J.
Wang
,
S.
Han
,
J.-H.
Lin
, and
Y.-C.
Zhang
, “
Influence blocking maximization on networks: Models, methods and applications
,”
Phys. Rep.
976
,
1
54
(
2022
).
20.
G.
Yang
,
T. P.
Benko
,
M.
Cavaliere
,
J.
Huang
, and
M.
Perc
, “
Identification of influential invaders in evolutionary populations
,”
Sci. Rep.
9
,
7305
(
2019
).
21.
G.
Yang
,
M.
Cavaliere
,
C.
Zhu
, and
M.
Perc
, “
Ranking the invasions of cheaters in structured populations
,”
Sci. Rep.
10
,
2231
(
2020
).
22.
D.
Kempe
,
J.
Kleinberg
, and
É.
Tardos
, “Maximizing the spread of influence through a social network,” in Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM, 2003), pp. 137–146.
23.
K.
Rahimkhani
,
A.
Aleahmad
,
M.
Rahgozar
, and
A.
Moeini
, “
A fast algorithm for finding most influential people based on the linear threshold model
,”
Expert Syst. Appl.
42
,
1353
1361
(
2015
).
24.
J.
Kim
,
W.
Lee
, and
H.
Yu
, “
CT-IC: Continuously activated and time-restricted independent cascade model for viral marketing
,”
Knowledge-Based Syst.
62
,
57
68
(
2014
).
25.
B.
Liu
,
G.
Cong
,
Y.
Zeng
,
D.
Xu
, and
Y. M.
Chee
, “
Influence spreading path and its application to the time constrained social influence maximization problem and beyond
,”
IEEE Trans. Knowl. Data Eng.
26
,
1904
1917
(
2013
).
26.
S.
Gao
,
H.
Pang
,
P.
Gallinari
,
J.
Guo
, and
N.
Kato
, “
A novel embedding method for information diffusion prediction in social network big data
,”
IEEE Trans. Ind. Inform.
13
,
2097
2105
(
2017
).
27.
M.
Granovetter
, “
Threshold models of collective behavior
,”
Am. J. Sociol.
83
,
1420
1443
(
1978
).
28.
J.
Leskovec
,
A.
Krause
,
C.
Guestrin
,
C.
Faloutsos
,
J.
VanBriesen
, and
N.
Glance
, “Cost-effective outbreak detection in networks,” in Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM, 2007), pp. 420–429.
29.
A.
Goyal
,
W.
Lu
, and
L. V.
Lakshmanan
, “Celf++ optimizing the greedy algorithm for influence maximization in social networks,” in Proceedings of the 20th International Conference Companion on World Wide Web (ACM, 2011), pp. 47–48.
30.
Y.-C.
Chen
,
W.-Y.
Zhu
,
W.-C.
Peng
,
W.-C.
Lee
, and
S.-Y.
Lee
, “
CIM: Community-based influence maximization in social networks
,”
ACM Trans. Intell. Syst. Technol.
5
,
1
31
(
2014
).
31.
J.
Li
,
T.
Cai
,
K.
Deng
,
X.
Wang
,
T.
Sellis
, and
F.
Xia
, “
Community-diversified influence maximization in social networks
,”
Inf. Syst.
92
,
101522
(
2020
).
32.
M.
Kitsak
,
L. K.
Gallos
,
S.
Havlin
,
F.
Liljeros
,
L.
Muchnik
,
H. E.
Stanley
, and
H. A.
Makse
, “
Identification of influential spreaders in complex networks
,”
Nat. Phys.
6
,
888
893
(
2010
).
33.
L.
Page
,
S.
Brin
,
R.
Motwani
, and
T.
Winograd
, et al “The pagerank citation ranking: Bringing order to the web,” Technical Report (The Stanford InfoLab, 1999).
34.
W.
Chen
,
Y.
Wang
, and
S.
Yang
, “Efficient influence maximization in social networks,” in Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM, 2009), pp. 199–208.
35.
Y.
Chen
,
G.
Paul
,
S.
Havlin
,
F.
Liljeros
, and
H. E.
Stanley
, “
Finding a better immunization strategy
,”
Phys. Rev. Lett.
101
,
058701
(
2008
).
36.
F.
Morone
and
H. A.
Makse
, “
Influence maximization in complex networks through optimal percolation
,”
Nature
524
,
65
68
(
2015
).
37.
S.
Cheng
,
H.
Shen
,
J.
Huang
,
G.
Zhang
, and
X.
Cheng
, “Staticgreedy: Solving the scalability-accuracy dilemma in influence maximization,” in Proceedings of the 22nd ACM International Conference on Information & Knowledge Management (ACM, 2013), pp. 509–518.
38.
C.
Borgs
,
M.
Brautbar
,
J.
Chayes
, and
B.
Lucier
, “Maximizing social influence in nearly optimal time,” in Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms (SIAM, 2014), pp. 946–957.
39.
X.
Wang
,
Y.
Zhang
,
W.
Zhang
,
X.
Lin
, and
C.
Chen
, “
Bring order into the samples: A novel scalable method for influence maximization
,”
IEEE Trans. Knowl. Data Eng.
29
,
243
256
(
2016
).
40.
S. S.
Singh
,
A.
Kumar
,
K.
Singh
, and
B.
Biswas
, “
Lapso-im: A learning-based influence maximization approach for social networks
,”
Appl. Soft. Comput.
82
,
105554
(
2019
).
41.
M.
Gong
,
J.
Yan
,
B.
Shen
,
L.
Ma
, and
Q.
Cai
, “
Influence maximization in social networks based on discrete particle swarm optimization
,”
Inf. Sci.
367
,
600
614
(
2016
).
42.
J.
Tang
,
R.
Zhang
,
Y.
Yao
,
Z.
Zhao
,
P.
Wang
,
H.
Li
, and
J.
Yuan
, “
Maximizing the spread of influence via the collective intelligence of discrete bat algorithm
,”
Knowledge-Based Syst.
160
,
88
103
(
2018
).
43.
C.
Fan
,
L.
Zeng
,
Y.
Sun
, and
Y.-Y.
Liu
, “
Finding key players in complex networks through deep reinforcement learning
,”
Nat. Mach. Intell.
2
,
317
324
(
2020
).
44.
L.
Ma
,
Z.
Shao
,
X.
Li
,
Q.
Lin
,
J.
Li
,
V. C.
Leung
, and
A. K.
Nandi
, “
Influence maximization in complex networks by using evolutionary deep reinforcement learning
,”
IEEE Trans. Emerg. Top. Comput. Intell.
7
,
995
1009
(
2022
).
45.
M. J.
Osborne
and
A.
Rubinstein
,
A Course in Game Theory
(
MIT Press
,
MA
,
1994
).
46.
P.
Erdds
and
A.
Réwi
, “
On random graphs I
,”
Publ. Math.-Debr.
6
,
18
(
1959
).
47.
M. E.
Newman
, “
The structure and function of complex networks
,”
SIAM Rev.
45
,
167
256
(
2003
).
48.
J.
Leskovec
and
A.
Krevl
, see http://snap.stanford.edu/data for “SNAP Datasets: Stanford large network dataset collection” (2014).
You do not currently have access to this content.