Agent intelligence involves specific requirements for social attributes. Intelligent agents make their decisions based on the groups they are part of, tend to satisfy co-members, and enlarge their own benefits. A fundamental question is whether this form of subgroup decision-making accommodate each individual’s preferences. In this paper, we examine the evolution of an anticoordination game on a higher-order network in the form of a simplicial complex in relation to the facet cover problem, which ensures that each subgroup yields a positive benefit. We introduce and apply the facet update rule to regulate nodes’ group-based interactions. We identify the payoff parameter condition that a strict Nash equilibrium (SNE) satisfies a facet cover. The proposed facet update rule enables the activated facet to reach a facet equilibrium, and all nodes would converge to an SNE with no more than 2m strategy switches, where m is the number of nodes in the simplicial complex. Additionally, we analyze the convergence of the asynchronous update rule, which can be seen as a special case of the facet update rule. Our simulations and extensive examples reveal that the SNE achieved by the facet update rule, on average, covers fewer nodes compared to the asynchronous update rule.

1.
A.
Mishra
,
S.
Saha
, and
S. K.
Dana
, “
Chimeras in globally coupled oscillators: A review
,”
Chaos
33
,
092101
(
2023
).
2.
A.
Arenas
,
A.
Díaz-Guilera
,
J.
Kurths
,
Y.
Moreno
, and
C.
Zhou
, “
Synchronization in complex networks
,”
Phys. Rep.
469
,
93
153
(
2008
).
3.
N.
Yao
,
Q.-Y.
Zhang
,
D.-Y.
Ren
,
Y.-J.
Li
,
C.-W.
Su
,
Z.-K.
Gao
, and
J.
Kurths
, “
Criticality in transient behavior of coupled oscillator system toward chimera and synchronization
,”
Chaos
33
,
073131
(
2023
).
4.
K.
Li
,
T.
Shi
, and
X.
Li
, “Synchronization of topological signals on simplicial complexes with higher-dimensional simplices,” in IEEE Transactions on Network Science and Engineering (IEEE, 2023).
5.
Z.
Gao
,
D.
Ghosh
,
H.
Harrington
,
J.
Restrepo
, and
D.
Taylor
, “
Dynamics on networks with higher-order interactions
,”
Chaos
33
,
040401
(
2023
).
6.
U.
Alvarez-Rodriguez
,
F.
Battiston
,
G. F.
de Arruda
,
Y.
Moreno
,
M.
Perc
, and
V.
Latora
, “
Evolutionary dynamics of higher-order interactions in social networks
,”
Nat. Hum. Behav.
5
,
586
595
(
2021
).
7.
J.
Fan
,
D.
Zhao
,
C.
Xia
, and
J.
Tanimoto
, “
Coupled spreading between information and epidemics on multiplex networks with simplicial complexes
,”
Chaos
32
,
113115
(
2022
).
8.
D.
Schlager
,
K.
Clauß
, and
C.
Kuehn
, “
Stability analysis of multiplayer games on adaptive simplicial complexes
,”
Chaos
32
,
053128
(
2022
).
9.
F.
Battiston
,
G.
Cencetti
,
I.
Iacopini
,
V.
Latora
,
M.
Lucas
,
A.
Patania
,
J.-G.
Young
, and
G.
Petri
, “
Networks beyond pairwise interactions: Structure and dynamics
,”
Phys. Rep.
874
,
1
92
(
2020
).
10.
S.
Boccaletti
,
P.
De Lellis
,
C.
del Genio
,
K.
Alfaro-Bittner
,
R.
Criado
,
S.
Jalan
, and
M.
Romance
, “
The structure and dynamics of networks with higher order interactions
,”
Phys. Rep.
1018
,
1
64
(
2023
).
11.
B.
Shahrokhzadeh
and
M.
Dehghan
, “
A distributed game-theoretic approach for target coverage in visual sensor networks
,”
IEEE Sens. J.
17
,
7542
7552
(
2017
).
12.
A. Y.
Yazıcıoglu
,
M.
Egerstedt
, and
J. S.
Shamma
, “
Communication-free distributed coverage for networked systems
,”
IEEE Trans. Control Netw. Syst.
4
(3),
499
510
(
2017
).
13.
S.
Rahili
,
J.
Lu
,
W.
Ren
, and
U. M.
Al-Saggaf
, “
Distributed coverage control of mobile sensor networks in unknown environment using game theory: Algorithms and experiments
,”
IEEE Trans. Mob. Comput.
17
,
1303
1313
(
2017
).
14.
V.
Ramaswamy
,
D.
Paccagnan
, and
J. R.
Marden
, “
Multiagent maximum coverage problems: The tradeoff between anarchy and stability
,”
IEEE Trans. Autom. Control
67
,
1698
1712
(
2021
).
15.
D. S. J.
Michael R. Garey
,
Computers and Intractability: A Guide to the Theory of NP-Completeness
(
W. H. Freeman and Company
,
1979
).
16.
Y.
Yang
and
X.
Li
, “
Towards a snowdrift game optimization to vertex cover of networks
,”
IEEE Trans. Cybern.
43
,
948
956
(
2013
).
17.
C.
Tang
,
A.
Li
, and
X.
Li
, “
Asymmetric game: A silver bullet to weighted vertex cover of networks
,”
IEEE Trans. Cybern.
48
,
2994
3005
(
2017
).
18.
S.
Niu
and
X.
Li
, “
A random memory length adaptive algorithm for vertex cover problem
,”
IFAC-PapersOnLine
56
,
5913
5918
(
2023
).
19.
C.
Sun
,
W.
Sun
,
X.
Wang
, and
Q.
Zhou
, “
Potential game theoretic learning for the minimal weighted vertex cover in distributed networking systems
,”
IEEE Trans. Cybern.
49
,
1968
1978
(
2018
).
20.
C.
Sun
,
H.
Qiu
,
W.
Sun
,
Q.
Chen
,
L.
Su
,
X.
Wang
, and
Q.
Zhou
, “
Better approximation for distributed weighted vertex cover via game-theoretic learning
,”
IEEE Trans. Syst. Man Cybern.: Syst.
52
,
5308
5319
(
2022
).
21.
Y.
Wang
,
Z.
, and
A. P.
Punnen
, “
A fast and robust heuristic algorithm for the minimum weight vertex cover problem
,”
IEEE Access
9
,
31932
31945
(
2021
).
22.
C.
Quan
and
P.
Guo
, “
A local search method based on edge age strategy for minimum vertex cover problem in massive graphs
,”
Expert Syst. Appl.
182
,
115185
(
2021
).
23.
M.
Granovetter
, “
Threshold models of collective behavior
,”
Am. J. Sociol.
83
,
1420
1443
(
1978
).
24.
J.
Riehl
,
P.
Ramazi
, and
M.
Cao
, “
Incentive-based control of asynchronous best-response dynamics on binary decision networks
,”
IEEE Trans. Control Netw. Syst.
6
,
727
736
(
2018
).
25.
Y.
Xie
,
W.
Han
,
J.
Qi
, and
Z.
Zhao
, “
Cooperation with dynamic asymmetric evaluation in complex networks from a risk perspective
,”
Chaos
34
,
013115
(
2024
).
26.
C.
Zhao
and
Y.
Zhu
, “
Heterogeneous decision-making dynamics of threshold-switching agents on complex networks
,”
Chaos
33
,
123133
(
2023
).
27.
B.
Pi
,
Z.
Zeng
,
M.
Feng
, and
J.
Kurths
, “
Evolutionary multigame with conformists and profiteers based on dynamic complex networks
,”
Chaos
32
,
023117
(
2022
).
28.
W.
Jeong
and
U.
Yu
, “
Critical phenomena and strategy ordering with hub centrality approach in the aspiration-based coordination game
,”
Chaos
31
,
093114
(
2021
).
29.
F.
Battiston
and
G.
Petri
,
Higher-Order Systems
(
Springer
,
2022
).
30.
G.
Bianconi
,
Higher-Order Networks
(
Cambridge University Press
,
2021
).
31.
A.
Patania
,
G.
Petri
, and
F.
Vaccarino
, “
The shape of collaborations
,”
EPJ Data Sci.
6
(18),
1
16
(
2017
).
32.
D.-F.
Zheng
,
H.
Yin
,
C.-H.
Chan
, and
P.
Hui
, “
Cooperative behavior in a model of evolutionary snowdrift games with N-person interactions
,”
Europhys. Lett.
80
,
18002
(
2007
).
33.
K.
Bernhard
and
J.
Vygen
,
Combinatorial Optimization: Theory and Algorithms
, 6th ed. (
Springer
,
2018
).
34.
J. F.
Nash
, Jr.
, “
Equilibrium points in N-person games
,”
Proc. Natl. Acad. Sci. U.S.A.
36
,
48
49
(
1950
).
35.
G.
Szabó
and
G.
Fath
, “
Evolutionary games on graphs
,”
Phys. Rep.
446
,
97
216
(
2007
).
36.
Y.
Zhu
,
Z.
Zhang
,
C.
Xia
, and
Z.
Chen
, “
Equilibrium analysis and incentive-based control of the anticoordinating networked game dynamics
,”
Automatica
147
,
110707
(
2023
).
37.
P.
Ramazi
,
J.
Riehl
, and
M.
Cao
, “
Networks of conforming or nonconforming individuals tend to reach satisfactory decisions
,”
Proc. Natl. Acad. Sci. U.S.A.
113
,
12985
12990
(
2016
).
38.
H.
Wang
,
C.
Ma
,
H.-S.
Chen
,
Y.-C.
Lai
, and
H.-F.
Zhang
, “
Full reconstruction of simplicial complexes from binary contagion and Ising data
,”
Nat. Commun.
13
,
3043
(
2022
).
39.
I.
Iacopini
,
G.
Petri
,
A.
Barrat
, and
V.
Latora
, “
Simplicial models of social contagion
,”
Nat. Commun.
10
,
2485
(
2019
).
40.
P.
Erdős
and
A.
Rényi
et al., “
On the evolution of random graphs
,”
Publ. Math. Inst. Hung. Acad. Sci.
5
,
17
60
(
1960
).
41.
D. J.
Watts
and
S. H.
Strogatz
, “
Collective dynamics of “small-world” networks
,”
Nature
393
,
440
442
(
1998
).
42.
A.-L.
Barabási
and
R.
Albert
, “
Emergence of scaling in random networks
,”
Science
286
,
509
512
(
1999
).
You do not currently have access to this content.