In the present article, we investigate the charged micro-particle dynamics in the surface radio-frequency trap (SRFT). We have developed a new configuration of the SRFT that consists of three curved electrodes on a glass substrate for massive micro-particles trapping. We provide the results of numerical simulations for the dynamical regimes of charged silica micro-particles in the SRFT. Here, we introduce a term of a “main route” to chaos, i.e., the sequence of dynamical regimes for the given particles with the increase of the strength of an electric field. Using the Lyapunov exponent formalism, typical Reynolds number map, Poincaré sections, bifurcation diagrams, and attractor basin boundaries, we have classified three typical main routes to chaos depending on the particle size. Interestingly, in the system described here, all main scenarios of a transition to chaos are implemented, including the Feigenbaum scenario, the Landau–Ruelle–Takens–Newhouse scenario as well as intermittency.

1.
R.
Wester
, “
Radiofrequency multipole traps: Tools for spectroscopy and dynamics of cold molecular ions
,”
J. Phys. B
42
,
154001
(
2009
).
2.
D.
Leibfried
,
R.
Blatt
,
C.
Monroe
, and
D.
Wineland
, “
Quantum dynamics of single trapped ions
,”
Rev. Mod. Phys.
75
,
281
(
2003
).
3.
D. M.
Bell
,
C. R.
Howder
,
R. C.
Johnson
, and
S. L.
Anderson
, “
Single CdSe/ZnS nanocrystals in an ion trap: Charge and mass determination and photophysics evolution with changing mass, charge, and temperature
,”
ACS Nano
8
,
2387
2398
(
2014
).
4.
B. M.
Mihalcea
,
V. S.
Filinov
,
R. A.
Syrovatka
, and
L. M.
Vasilyak
, “
The physics and applications of strongly coupled Coulomb systems (plasmas) levitated in electrodynamic traps
,”
Phys. Rep.
1016
,
1
103
(
2023
).
5.
D.
Douglas
, “
Linear quadrupoles in mass spectrometry
,”
Mass Spectrom. Rev.
28
,
937
960
(
2009
).
6.
V.
Rybin
,
D.
Shcherbinin
,
M.
Semynin
,
A.
Gavenchuk
,
V.
Zakharov
,
A.
Ivanov
,
Y.
Rozhdestvensky
, and
S.
Rudyi
, “
Novel nonlinear damping identification method: Simultaneous size, mass, charge and density measurements of a microparticle in quadrupole trap
,”
Powder Technol.
427
,
118717
(
2023
).
7.
C.
Xiong
,
H.
Liu
,
Y.
Li
,
L.
Meng
,
J.
Wang
, and
Z.
Nie
, “
High speed mass measurement of a single metal–organic framework nanocrystal in a Paul trap
,”
Anal. Chem.
94
,
2686
2692
(
2022
).
8.
V. Y.
Pecherkin
,
L.
Vasilyak
, and
V.
Vladimirov
, “
Coulomb structures of charged microparticles in vertically oriented linear electrodynamic trap
,”
Plasma Phys. Rep.
49
,
300
302
(
2023
).
9.
Y.
Wang
,
N.
Tong
,
F.
Li
,
K.
Zhao
,
D.
Wang
,
Y.
Niu
,
F.
Xu
,
J.
Cheng
, and
J.
Wang
, “
Trapping of a single microparticle using AC dielectrophoresis forces in a microfluidic chip
,”
Micromachines
14
,
159
(
2023
).
10.
E. J.
Davis
, “
Electrodynamic balance stability characteristics and applications to the study of aerocolloidal particles
,”
Langmuir
1
,
379
387
(
1985
).
11.
D.
Lapitsky
,
V.
Filinov
,
L.
Deputatova
,
L.
Vasilyak
,
V.
Vladimirov
, and
V. Y.
Pecherkin
, “
Dust particles behavior in an electrodynamic trap
,”
Contrib. Plasma Phys.
53
,
450
456
(
2013
).
12.
A.
Valenzuela
,
F.
García-Izquierdo
,
G.
Sánchez-Jiménez
,
E.
Bazo
,
J. L.
Guerrero-Rascado
,
P.
Cariñanos
,
L.
Alados-Arboledas
, and
F. J.
Olmo-Reyes
, “
Optical properties from extinction cross-section of single pollen particles under laboratory-controlled relative humidity
,”
J. Aerosol. Sci.
177
,
106311
(
2023
).
13.
R. E.
March
, “
Quadrupole ion traps
,”
Mass Spectrom. Rev.
28
,
961
989
(
2009
).
14.
M.
House
, “
Analytic model for electrostatic fields in surface-electrode ion traps
,”
Phys. Rev. A
78
,
033402
(
2008
).
15.
D.
Shcherbinin
,
V.
Rybin
,
S.
Rudyi
,
A.
Dubavik
,
S.
Cherevkov
,
Y.
Rozhdestvensky
, and
A.
Ivanov
, “
Charged hybrid microstructures in transparent thin-film ito traps: Localization and optical control
,”
Surfaces
6
,
133
144
(
2023
).
16.
Z. D.
Romaszko
,
S.
Hong
,
M.
Siegele
,
R. K.
Puddy
,
F. R.
Lebrun-Gallagher
,
S.
Weidt
, and
W. K.
Hensinger
, “
Engineering of microfabricated ion traps and integration of advanced on-chip features
,”
Nat. Rev. Phys.
2
,
285
299
(
2020
).
17.
Q.
Guo
,
L.
Gao
,
Y.
Zhai
, and
W.
Xu
, “
Recent developments of miniature ion trap mass spectrometers
,”
Chin. Chem. Lett.
29
,
1578
1584
(
2018
).
18.
D.
Nolting
,
R.
Malek
, and
A.
Makarov
, “
Ion traps in modern mass spectrometry
,”
Mass Spectrom. Rev.
38
,
150
168
(
2019
).
19.
K. T.
Alligood
,
T. D.
Sauer
, and
J. A.
Yorke
, “
Chaos: An introduction to dynamical systems
,” in
Textbooks in Mathematical Sciences (TIMS)
(Springer New York, NY, 1996), Vol. XVII, p. 603.
20.
V. V.
Kogai
,
V. A.
Likhoshvai
,
S. I.
Fadeev
, and
T. M.
Khlebodarova
, “
Multiple scenarios of transition to chaos in the alternative splicing model
,”
Int. J. Bifurc. Chaos
27
,
1730006
(
2017
).
21.
E.
Lorenz
, “Does the flap of a butterfly’s wings in Brazil set off a tornado in Texas,” Transcript of a Lecture given at the 139th Meeting of the American Association for the Advancement of Science, Washington, DC, 1972, see https://mathsciencehistory.com/wp-content/uploads/2020/03/132_kap6_lorenz_artikel_the_butterfly_effect.pdf
22.
É.
Ghys
, “The butterfly effect,” in The Proceedings of the 12th International Congress on Mathematical Education: Intellectual and Attitudinal Challenges (Springer International Publishing, 2015), pp. 19–39.
23.
S.
Rudyi
,
A.
Ivanov
, and
D.
Shcherbinin
, “
Fractal quasi-Coulomb crystals in ion trap with cantor dust electrode configuration
,”
Fractal Fract.
7
,
686
(
2023
).
24.
D.
Gerlich
, “
Inhomogeneous rf fields: A versatile tool for the study of processes with slow ions
,”
Adv. Chem. Phys.
82
,
1
176
(
1992
).
25.
I.
Proudman
and
J.
Pearson
, “
Expansions at small Reynolds numbers for the flow past a sphere and a circular cylinder
,”
J. Fluid Mech.
2
,
237
262
(
1957
).
26.
F.
Christiansen
and
H. H.
Rugh
, “
Computing Lyapunov spectra with continuous Gram-Schmidt orthonormalization
,”
Nonlinearity
10
,
1063
(
1997
).
27.
Y.
Tang
,
J.
Kurths
,
W.
Lin
,
E.
Ott
, and
L.
Kocarev
, “
Introduction to Focus Issue: When machine learning meets complex systems: Networks, chaos, and nonlinear dynamics
,”
Chaos
30
,
063151
(
2020
).
28.
I.
Kovacic
,
R.
Rand
, and
S.
Mohamed Sah
, “
Mathieu’s equation and its generalizations: Overview of stability charts and their features
,”
Appl. Mech. Rev.
70
,
020802
(
2018
).
29.
J.-P.
Eckmann
, “
Roads to turbulence in dissipative dynamical systems
,”
Rev. Mod. Phys.
53
,
643
(
1981
).
30.
S.
Rudyi
,
V.
Rybin
,
M.
Semynin
,
D.
Shcherbinin
,
Y. V.
Rozhdestvensky
, and
A.
Ivanov
, “
Period-doubling bifurcation in surface radio-frequency trap: Transition to chaos through Feigenbaum scenario
,”
Chaos
33
,
093133
(
2023
).
31.
M. J.
Feigenbaum
, “Universal behavior in nonlinear systems,”
Phys. D: Nonlin. Phenom.
7
, 16–39 (
1983
).
32.
T.
Tél
, “Transient chaos,” in
Experimental Study and Characterization of Chaos: A Collection of Reviews and Lecture Notes
(World Scientific Publishing Co., 1990), Vol. 3, pp. 149–211.
33.
S.
Cang
,
G.
Qi
, and
Z.
Chen
, “
A four-wing hyper-chaotic attractor and transient chaos generated from a new 4-D quadratic autonomous system
,”
Nonlinear Dyn.
59
,
515
527
(
2010
).
34.
C.
Grebogi
,
E.
Ott
, and
J. A.
Yorke
, “
Crises, sudden changes in chaotic attractors, and transient chaos
,”
Phys. D: Nonlin. Phenom.
7
,
181
200
(
1983
).
35.
Y.-C.
Lai
and
T.
Tél
,
Transient Chaos: Complex Dynamics on Finite Time Scales
(
Springer Science & Business Media
,
2011
), Vol. 173.
36.
V. K.
Tamba
,
F. K.
Tagne
,
A. L. M.
Biamou
,
M. C.
Nkeing
, and
A. N.
Takougang
, “Hidden extreme multistability generated from a novel memristive two-scroll chaotic system,” in Mem-Elements for Neuromorphic Circuits with Artificial Intelligence Applications (Elsevier, 2021), pp. 147–164.
37.
A.
Lucas
, “
Ising formulations of many NP problems
,”
Front. Phys.
2
,
74887
(
2014
).
You do not currently have access to this content.