This paper is concerned with the limit cycle problem of a cubic reversible Hamiltonian system under perturbation of polynomials of degree with a switching line . The upper and lower bounds of the number of limit cycles are obtained using the first order Melnikov function and its expansion. The method for calculating the Melnikov function relies upon some iterative formulas, which differs from other approaches.
REFERENCES
1.
2.
A.
Choudhury
and P.
Guha
, “On commuting vector fields and Darboux functions for planar differential equations
,” Lobachevskii J. Math.
34
, 212
–226
(2013
).3.
R.
Conti
, “Uniformly isochronous centers of polynomial system in R
,” Lect. Notes Pure Appl. Math.
152
, 21
–31
(1994
).4.
L.
Guo
, A.
Chen
, and S.
Zhao
, “Global phase portraits of uniform isochronous centers system of degree six with polynomial commutator
,” Acta Math. Appl. Sin. Engl. Ser.
40
(3
), 577
–599
(2024
). 5.
J.
Llibre
and J.
Itikawa
, “Limit cycles for continuous and discontinuous perturbations of uniform isochronous cubic centers
,” J. Comput. Appl. Math.
277
, 171
–191
(2015
). 6.
W.
Loud
, “Behavior of the period of solutions of certain plane autonomous systems near centers
,” Contrib. Differ. Equ.
3
, 21
–36
(1964
).7.
C.
Chicone
and M.
Jacobs
, “Bifurcation of limit cycles from quadratic isochrones
,” J. Differ. Equ.
91
, 268
–326
(1991
). 8.
C.
Li
, W.
Li
, J.
Llibre
, and Z.
Zhang
, “Linear estimate for the number of zeros of Abelian integrals for quadratic isochronous centers
,” Nonlinearity
13
, 1775
–1800
(2000
). 9.
X.
Cen
, C.
Liu
, L.
Yang
, and M.
Zhang
, “Limit cycles by perturbing quadratic isochronous centers inside piecewise polynomial differential systems
,” J. Differ. Equ.
265
, 6083
–6126
(2018
). 10.
X.
Cen
, S.
Li
, and Y.
Zhao
, “On the number of limit cycles for a class of discontinuous quadratic differetnial systems
,” J. Math. Anal. Appl.
449
, 314
–342
(2017
). 11.
S.
Li
and X.
Cen
, “Limit cycles for perturbing quadratic isochronous center inside discontinuous quadratic polynomial differential system
,” Acta Math. Sci.
36
(5
), 919
–927
(2016
) (in Chinese).12.
J.
Llibre
and A. C.
Mereu
, “Limit cycles for discontinuous quadratic differetnial systems
,” J. Math. Anal. Appl.
413
, 763
–775
(2014
). 13.
P.
Mardešić
, L.
Moser-Jauslin
, and C.
Rousseau
, “Darboux linearization and isochronous centers with a rational first integral
,” J. Differ. Equ.
134
, 216
–268
(1997
).14.
I.
Pleshkan
, “A new method of investigating the isochronicity of a system of two differential equations
,” Differ. Equ.
5
, 796
–802
(1969
).15.
A.
Gasull
, W.
Li
, J.
Llibre
, and Z.
Zhang
, “Chebyshev property of complete elliptic integrals and its application to Abelian integrals
,” Pacific J. Math.
202
, 341
–361
(2002
). 16.
M.
Grau
and J.
Villadelprat
, “Bifurcation of critical periods from Pleshkan’s isochrones
,” J. London Math. Soc.
81
, 142
–160
(2010
). 17.
J.
Chavarriga
and I.
García
, Isochronous Centers of Cubic Reversible Systems
(Springer Berlin Heidelberg
, 1999
).18.
J.
Chavarriga
and M.
Sabatini
, “A survey of isochronous centers
,” Qual. Theory Dyn. Syst.
1
, 1
–70
(1999
). 19.
M.
Bernardo
, C.
Budd
, A.
Champneys
, and P.
Kowalczyk
, Piecewise Smooth Dynamical Systems
, Theory and Applications (Springer-Verlag
, London
, 2008
).20.
21.
22.
I.
Belykh
, R.
Kuske
, M.
Porfiri
, and D. J. W.
Simpson
, “Beyond the Bristol book: Advances and perspectives in nonsmooth dynamics and applications
,” Chaos
33
, 010402
(2023
). 23.
E.
Freire
, E.
Ponce
, and J.
Ros
, “Limit cycle bifurcation from center in symmetric piecewise-linear systems
,” Internat. J. Bifur. Chaos
9
(5
), 895
–907
(1999
). 24.
P.
Kowalczyk
et al., “Two-parameter discontinuity-induced bifurcations of limit cycles: Classification and open problems
,” Internat. J. Bifur. Chaos
16
(3
), 601
–629
(1999
). 25.
D. J. W.
Simpsona
and J. D.
Meiss
, “Aspects of bifurcation theory for piecewise-smooth, continuous systems
,” Physica D
241
, 1861
–1868
(2012
).26.
D. J. W.
Simpsona
and J. D.
Meiss
, “Andronov-Hopf bifurcations in planar, piecewise-smooth, continuous flows
,” Phys. Lett. A
371
, 213
–220
(2007
).27.
J.
Llibre
and X.
Zhang
, “Limit cycles created by piecewise linear centers
,” Chaos
29
, 053116
(2019
). 28.
M.
Han
and S.
Liu
, “Hopf bifurcation in a class of piecewise smooth near-Hamiltonian systems
,” Bull. Sci. Math.
195
, 103471
(2024
). 29.
M.
Han
and L.
Sheng
, “Bifurcation of limit cycles in piecewise smooth systems via Melnikov function
,” J. Appl. Anal. Comput.
5
, 809
–815
(2015
).30.
X.
Liu
and M.
Han
, “Bifurcation of limit cycles by perturbing piecewise Hamiltonian systems
,” Internat. J. Bifur. Chaos
20
, 1379
–1390
(2010
). © 2024 Author(s). Published under an exclusive license by AIP Publishing.
2024
Author(s)
You do not currently have access to this content.