This paper is concerned with the limit cycle problem of a cubic reversible Hamiltonian system under perturbation of polynomials of degree n with a switching line x = 0. The upper and lower bounds of the number of limit cycles are obtained using the first order Melnikov function and its expansion. The method for calculating the Melnikov function relies upon some iterative formulas, which differs from other approaches.

1.
F.
Calogero
,
Isochronous Systems
(
Oxford University Press
,
2008
).
2.
A.
Choudhury
and
P.
Guha
, “
On commuting vector fields and Darboux functions for planar differential equations
,”
Lobachevskii J. Math.
34
,
212
226
(
2013
).
3.
R.
Conti
, “
Uniformly isochronous centers of polynomial system in R 2
,”
Lect. Notes Pure Appl. Math.
152
,
21
31
(
1994
).
4.
L.
Guo
,
A.
Chen
, and
S.
Zhao
, “
Global phase portraits of uniform isochronous centers system of degree six with polynomial commutator
,”
Acta Math. Appl. Sin. Engl. Ser.
40
(
3
),
577
599
(
2024
).
5.
J.
Llibre
and
J.
Itikawa
, “
Limit cycles for continuous and discontinuous perturbations of uniform isochronous cubic centers
,”
J. Comput. Appl. Math.
277
,
171
191
(
2015
).
6.
W.
Loud
, “
Behavior of the period of solutions of certain plane autonomous systems near centers
,”
Contrib. Differ. Equ.
3
,
21
36
(
1964
).
7.
C.
Chicone
and
M.
Jacobs
, “
Bifurcation of limit cycles from quadratic isochrones
,”
J. Differ. Equ.
91
,
268
326
(
1991
).
8.
C.
Li
,
W.
Li
,
J.
Llibre
, and
Z.
Zhang
, “
Linear estimate for the number of zeros of Abelian integrals for quadratic isochronous centers
,”
Nonlinearity
13
,
1775
1800
(
2000
).
9.
X.
Cen
,
C.
Liu
,
L.
Yang
, and
M.
Zhang
, “
Limit cycles by perturbing quadratic isochronous centers inside piecewise polynomial differential systems
,”
J. Differ. Equ.
265
,
6083
6126
(
2018
).
10.
X.
Cen
,
S.
Li
, and
Y.
Zhao
, “
On the number of limit cycles for a class of discontinuous quadratic differetnial systems
,”
J. Math. Anal. Appl.
449
,
314
342
(
2017
).
11.
S.
Li
and
X.
Cen
, “
Limit cycles for perturbing quadratic isochronous center inside discontinuous quadratic polynomial differential system
,”
Acta Math. Sci.
36
(
5
),
919
927
(
2016
) (in Chinese).
12.
J.
Llibre
and
A. C.
Mereu
, “
Limit cycles for discontinuous quadratic differetnial systems
,”
J. Math. Anal. Appl.
413
,
763
775
(
2014
).
13.
P.
Mardešić
,
L.
Moser-Jauslin
, and
C.
Rousseau
, “
Darboux linearization and isochronous centers with a rational first integral
,”
J. Differ. Equ.
134
,
216
268
(
1997
).
14.
I.
Pleshkan
, “
A new method of investigating the isochronicity of a system of two differential equations
,”
Differ. Equ.
5
,
796
802
(
1969
).
15.
A.
Gasull
,
W.
Li
,
J.
Llibre
, and
Z.
Zhang
, “
Chebyshev property of complete elliptic integrals and its application to Abelian integrals
,”
Pacific J. Math.
202
,
341
361
(
2002
).
16.
M.
Grau
and
J.
Villadelprat
, “
Bifurcation of critical periods from Pleshkan’s isochrones
,”
J. London Math. Soc.
81
,
142
160
(
2010
).
17.
J.
Chavarriga
and
I.
García
,
Isochronous Centers of Cubic Reversible Systems
(
Springer Berlin Heidelberg
,
1999
).
18.
J.
Chavarriga
and
M.
Sabatini
, “
A survey of isochronous centers
,”
Qual. Theory Dyn. Syst.
1
,
1
70
(
1999
).
19.
M.
Bernardo
,
C.
Budd
,
A.
Champneys
, and
P.
Kowalczyk
,
Piecewise Smooth Dynamical Systems
, Theory and Applications (
Springer-Verlag
,
London
,
2008
).
20.
M.
Kukucka
,
Non-smooth Dynamical Systems
(
Springer-Verlag
,
Berlin
,
2000
).
21.
M.
Teixeira
,
Perturbation Theory for Non-smooth Systems
(
Springer
,
New York
,
2009
).
22.
I.
Belykh
,
R.
Kuske
,
M.
Porfiri
, and
D. J. W.
Simpson
, “
Beyond the Bristol book: Advances and perspectives in nonsmooth dynamics and applications
,”
Chaos
33
,
010402
(
2023
).
23.
E.
Freire
,
E.
Ponce
, and
J.
Ros
, “
Limit cycle bifurcation from center in symmetric piecewise-linear systems
,”
Internat. J. Bifur. Chaos
9
(
5
),
895
907
(
1999
).
24.
P.
Kowalczyk
et al., “
Two-parameter discontinuity-induced bifurcations of limit cycles: Classification and open problems
,”
Internat. J. Bifur. Chaos
16
(
3
),
601
629
(
1999
).
25.
D. J. W.
Simpsona
and
J. D.
Meiss
, “
Aspects of bifurcation theory for piecewise-smooth, continuous systems
,”
Physica D
241
,
1861
1868
(
2012
).
26.
D. J. W.
Simpsona
and
J. D.
Meiss
, “
Andronov-Hopf bifurcations in planar, piecewise-smooth, continuous flows
,”
Phys. Lett. A
371
,
213
220
(
2007
).
27.
J.
Llibre
and
X.
Zhang
, “
Limit cycles created by piecewise linear centers
,”
Chaos
29
,
053116
(
2019
).
28.
M.
Han
and
S.
Liu
, “
Hopf bifurcation in a class of piecewise smooth near-Hamiltonian systems
,”
Bull. Sci. Math.
195
,
103471
(
2024
).
29.
M.
Han
and
L.
Sheng
, “
Bifurcation of limit cycles in piecewise smooth systems via Melnikov function
,”
J. Appl. Anal. Comput.
5
,
809
815
(
2015
).
30.
X.
Liu
and
M.
Han
, “
Bifurcation of limit cycles by perturbing piecewise Hamiltonian systems
,”
Internat. J. Bifur. Chaos
20
,
1379
1390
(
2010
).
You do not currently have access to this content.