In this paper, we will show two approaches to analyze the dynamics of a stochastic partial differential equation (PDE) with long time memory, which does not generate a random dynamical system and, consequently, the general theory of random attractors is not applicable. On the one hand, we first approximate the stochastic PDEs by a random one via replacing the white noise by a colored one. The resulting random equation does generate a random dynamical system which possesses a random attractor depending on the covariance parameter of the colored noise. On the other hand, we define a mean random dynamical system via the solution operator and prove the existence and uniqueness of weak pullback mean random attractors when the problem is driven by a more general white noise.

1.
G.
Da Prato
and
J.
Zabczyk
,
Stochastic Equations in Infinite Dimensions
(
Cambridge University Press
,
Cambridge
,
1992
).
2.
N.
Krylov
and
B.
Rozovsky
, Stochastic Differential Equations: Theory and Applications, Interdisciplinary Mathematical Sciences Vol. 2 (World Scientific, Hackensack, NJ, 2007), pp. 1–69.
3.
E.
Pardoux
, Équations aux Dérivées Partielles Stochastiques non Linéaire Monotones, Ph.D. thesis, University of Paris XI, 1975.
4.
H.
Tang
, “
On the pathwise solutions to the Camassa-Holm equations with multiplicative noise
,”
SIAM J. Math. Anal.
50
,
1322
1366
(
2018
).
5.
Y. J.
Wang
and
J. Y.
Wang
, “
Pullback attractors for multi-valued non-compact random dynamical systems generated by reaction-diffusion equations on an unbounded domain
,”
J. Differ. Equ.
259
,
728
776
(
2015
).
6.
Y. J.
Wang
,
J. Y.
Wang
, and
D.
Zhao
, “
Pullback attractors for multi-valued non-compact random dynamical systems generated by semi-linear degenerate parabolic equations with unbounded delays
,”
Stoch. Dyn.
16
,
1750001
(
2016
).
7.
B. X.
Wang
, “
Random attractors for non-autonomous stochastic wave equations with multiplicative noise
,”
Discrete Contin. Dyn. Syst.
34
,
269
300
(
2014
).
8.
J. H.
Xu
,
T.
Caraballo
, and
J.
Valero
, “
Dynamical analysis and Wong-Zakai approximations of stochastic nonlocal PDEs with long time memory
,”
Qual. Theory Dyn. Syst.
(published online,
2024
).
9.
T.
Caraballo
,
I. D.
Chueshov
,
P.
Marín-Rubio
, and
J.
Real
, “
Existence and asymptotic behavior for stochastic heat equations with multiplicative noise in materials with memory
,”
Discrete Contin. Dyn. Syst.
18
,
253
270
(
2007
).
10.
J. H.
Xu
and
T.
Caraballo
, “
Dynamics of stochastic nonlocal partial differential equations
,”
Eur. Phys. J. Plus
136
,
849
(
2021
).
11.
T.
Caraballo
,
M. J.
Garrido-Atienza
,
B.
Schmalfuß
, and
J.
Valero
, “
Global attractor for a non-autonomous integro-differential equation in materials with memory
,”
Nonlinear Anal.
73
,
183
201
(
2010
).
12.
M.
Chipot
,
V.
Valente
, and
G. V.
Caffarelli
, “
Remarks on a nonlocal problem involving the Dirichlet energy
,”
Rend. Semin. Mat. Univ. Padova
110
,
199
220
(
2003
). See http://www.numdam.org/item/RSMUP_2003__110__199_0/
13.
M.
Conti
,
V.
Pata
, and
M.
Squassina
, “
Singular limit of differential systems with memory
,”
Indiana Univ. Math. J.
1
,
169
215
(
2006
).
14.
J. H.
Xu
,
T.
Caraballo
, and
J.
Valero
, “
Asymptotic behavior of nonlocal partial differential equations with long time memory
,”
Discrete Contin. Dyn. Syst. Sci.
15
,
3059
3078
(
2022
).
15.
P. Y.
Chen
,
R. H.
Wang
, and
X. P.
Zhang
, “
Long-time dynamics of fractional nonclassical diffusion equations with nonlinear colored noise and delay on unbounded domains
,”
Bull. Sci. Math.
173
,
103071
(
2021
).
16.
A. H.
Gu
,
B. L.
Guo
, and
B. X.
Wang
, “
Long term behavior of random Navier-Stokes equations driven by colored noise
,”
Discrete Contin. Dyn. Syst. Ser. B
25
,
2495
2532
(
2020
).
17.
A. H.
Gu
,
K. N.
Lu
, and
B. X.
Wang
, “
Asymptotic behavior of random Navier-Stokes equations driven by Wong-Zakai approximation
,”
Discrete Contin. Dyn. Syst. Ser. A
39
,
185
218
(
2019
).
18.
A. H.
Gu
and
B. X.
Wang
, “
Asymptotic behavior of random Fitzhugh-Nagumo systems driven by colored noise
,”
Discrete Contin. Dyn. Syst. Ser. B
23
,
1689
1720
(
2018
).
19.
J. H.
Xu
and
T.
Caraballo
, “
Long time behavior of stochastic nonlocal partial differential equations and Wong-Zakai approximations
,”
SIAM J. Math. Anal.
54
,
2792
2844
(
2022
).
20.
L.
Arnold
,
Random Dynamical Systems
(
Springer
,
Berlin
,
1998
).
21.
K. N.
Lu
and
B. X.
Wang
, “
Wong-Zakai approximations and long term behavior of stochastic partial differential equations
,”
J. Dyn. Diff. Equ.
31
,
1341
1371
(
2019
).
22.
C.
Giorgi
,
V.
Pata
, and
A.
Marzochi
, “
Asymptotic behavior of a semilinear problem in heat conduction with memory
,”
Nonlinear Differ. Equ. App.
5
,
333
354
(
1998
).
23.
J. H.
Xu
,
T.
Caraballo
, and
J.
Valero
, “
Asymptotic behavior of a semilinear problem in heat conduction with long time memory and non-local diffusion
,”
J. Differ. Equ.
327
,
418
447
(
2022
).
24.
J. H.
Xu
,
Z. C.
Zhang
, and
T.
Caraballo
, “
Non-autonomous nonlocal partial differential equations with delay and memory
,”
J. Differ. Equ.
270
,
505
546
(
2021
).
25.
R.
Temam
,
Infinite-Dimensional Dynamical Systems in Mechanics and Physics
(
Springer
,
New York
,
1997
).
26.
J.
Robinson
,
Infinite Dimensional Dynamical Systems
(
Cambridge University Press
,
Cambridge
,
2001
).
27.
B. X.
Wang
, “
Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems
,”
J. Differ. Equ.
253
,
1544
1583
(
2012
).
28.
B. X.
Wang
, “
Existence and upper semicontinuity of attractors for stochastic equations with deterministic non-autonomous terms
,”
Stoch. Dyn.
14
,
1
31
(
2014
).
29.
J. H.
Xu
,
T.
Caraballo
, and
J.
Valero
, “Dynamics of stochastic fractional heat equations in material with memory” (unpublished).
30.
B. X.
Wang
, “
Dynamics of fractional stochastic reaction-diffusion equations on unbounded domains driven by nonlinear noise
,”
J. Differ. Equ.
268
,
1
59
(
2019
).
You do not currently have access to this content.