The modulation instability (MI) is responsible for the disintegration of a regular nonlinear wave train and can lead to strong localizations in the form of rogue waves. This mechanism has been studied in a variety of nonlinear dispersive media, such as hydrodynamics, optics, plasma, mechanical systems, electric transmission lines, and Bose–Einstein condensates, while its impact on applied sciences is steadily growing. It is well-known that the classical MI dynamics can be triggered when a pair of small-amplitude sidebands are excited within a particular frequency range around the main peak frequency. That is, a three-wave system, consisting of the carrier wave together with a pair of unstable sidebands, is usually adopted to initiate the wave focusing process in a numerical or laboratory experiment. Breather solutions of the nonlinear Schrödinger equation (NLSE) revealed that MI can generate much more complex localized structures, beyond the three-wave system initialization approach or by means of a continuous spectrum. In this work, we report an experimental study for deep-water surface gravity waves asserting that a MI process can be triggered by a single unstable sideband only, and thus, initialized from a two-wave process when including the contribution of the peak frequency. The experimental data are validated against fully nonlinear hydrodynamic numerical wave tank simulations and show very good agreement. The long-term evolution of such unstable wave trains shows a distinct shift in the recurrent Fermi–Pasta–Ulam–Tsingou focusing cycles, which are captured by the NLSE and fully nonlinear hydrodynamic simulations with some distinctions.

1.
D.
Benney
and
A. C.
Newell
,
J. Math. Phys.
46
,
133
(
1967
).
2.
M.
Remoissenet
,
Waves Called Solitons: Concepts and Experiments
(
Springer Science & Business Media
,
2013
).
3.
A. R.
Osborne
, in Scattering (Elsevier, 2002), pp. 637–666.
4.
M. J.
Ablowitz
,
Nonlinear Dispersive Waves: Asymptotic Analysis and Solitons
(
Cambridge University Press
,
2011
), Vol. 47.
5.
T. B.
Benjamin
,
Proc. R. Soc. London, Ser. A
299
,
59
(
1967
).
6.
H.
Bailung
and
Y.
Nakamura
,
J. Plasma Phys.
50
,
231
(
1993
).
7.
K.
Tai
,
A.
Hasegawa
, and
A.
Tomita
,
Phys. Rev. Lett.
56
,
135
(
1986
).
8.
P.
Everitt
,
M.
Sooriyabandara
,
M.
Guasoni
,
P.
Wigley
,
C.
Wei
,
G.
McDonald
,
K.
Hardman
,
P.
Manju
,
J.
Close
,
C.
Kuhn
et al., “
Phys. Rev. A
96
,
041601
(
2017
).
9.
V. E.
Zakharov
and
L. A.
Ostrovsky
,
Physica D
238
,
540
(
2009
).
10.
H. C.
Yuen
and
B. M.
Lake
,
Adv. Appl. Mech.
22
,
67
(
1982
).
11.
E.
Fermi
,
P.
Pasta
,
S.
Ulam
, and
M.
Tsingou
, “Studies of the nonlinear problems,” Technical Report [Los Alamos National Laboratory (LANL), Los Alamos, 1955].
12.
S.
Trillo
and
S.
Wabnitz
,
Opt. Lett.
16
,
986
(
1991
).
13.
M. P.
Tulin
and
T.
Waseda
,
J. Fluid Mech.
378
,
197
(
1999
).
14.
C. M.
Chiang
,
M.
Stiassnie
, and
D. K.
Yue
,
Theory and Applications of Ocean Surface Waves: Part 1: Linear Aspects Part 2: Nonlinear Aspects
(
World Scientific
,
2005
).
15.
T.
Dauxois
,
Phys. Today
61
(
1
),
55
(
2008
).
16.
A.
Babanin
,
Breaking and Dissipation of Ocean Surface Waves
(
Cambridge University Press
,
2011
).
17.
O.
Kimmoun
,
H.
Hsu
,
H.
Branger
,
M.
Li
,
Y.
Chen
,
C.
Kharif
,
M.
Onorato
,
E. J.
Kelleher
,
B.
Kibler
,
N.
Akhmediev
et al.,
Sci. Rep.
6
,
28516
(
2016
).
18.
D.
Pierangeli
,
M.
Flammini
,
L.
Zhang
,
G.
Marcucci
,
A.
Agranat
,
P.
Grinevich
,
P.
Santini
,
C.
Conti
, and
E.
DelRe
,
Phys. Rev. X
8
,
041017
(
2018
).
19.
A.
Mussot
,
C.
Naveau
,
M.
Conforti
,
A.
Kudlinski
,
F.
Copie
,
P.
Szriftgiser
, and
S.
Trillo
,
Nat. Photonics
12
,
303
(
2018
).
20.
N.
Akhmediev
,
V.
Eleonskii
, and
N.
Kulagin
,
Sov. Phys. JETP
62
,
894
(
1985
). See http://www.jetp.ras.ru/cgi-bin/dn/e_062_05_0894.pdf.
22.
J. M.
Dudley
,
G.
Genty
,
F.
Dias
,
B.
Kibler
, and
N.
Akhmediev
,
Opt. Express
17
,
21497
(
2009
).
23.
B.
Kibler
,
J.
Fatome
,
C.
Finot
,
G.
Millot
,
F.
Dias
,
G.
Genty
,
N.
Akhmediev
, and
J. M.
Dudley
,
Nat. Phys.
6
,
790
(
2010
).
24.
A.
Chabchoub
,
N.
Hoffmann
, and
N.
Akhmediev
,
Phys. Rev. Lett.
106
,
204502
(
2011
).
25.
H.
Bailung
,
S.
Sharma
, and
Y.
Nakamura
,
Phys. Rev. Lett.
107
,
255005
(
2011
).
26.
A.
Chabchoub
,
B.
Kibler
,
J. M.
Dudley
, and
N.
Akhmediev
,
Philos. Trans. R. Soc. A
372
,
20140005
(
2014
).
27.
D.
Luo
,
Y.
Jin
,
J. H.
Nguyen
,
B. A.
Malomed
,
O. V.
Marchukov
,
V. A.
Yurovsky
,
V.
Dunjko
,
M.
Olshanii
, and
R.
Hulet
,
Phys. Rev. Lett.
125
,
183902
(
2020
).
28.
A.
Romero-Ros
,
G.
Katsimiga
,
S.
Mistakidis
,
S.
Mossman
,
G.
Biondini
,
P.
Schmelcher
,
P.
Engels
, and
P.
Kevrekidis
,
Phys. Rev. Lett.
132
,
033402
(
2024
).
29.
N.
Akhmediev
and
V.
Korneev
,
Theor. Math. Phys.
69
,
1089
(
1986
).
30.
M.
Conforti
,
A.
Mussot
,
A.
Kudlinski
,
S.
Trillo
, and
N.
Akhmediev
,
Phys. Rev. A
101
,
023843
(
2020
).
31.
G.
Vanderhaegen
,
C.
Naveau
,
P.
Szriftgiser
,
A.
Kudlinski
,
M.
Conforti
,
A.
Mussot
,
M.
Onorato
,
S.
Trillo
,
A.
Chabchoub
, and
N.
Akhmediev
,
Proc. Natl. Acad. Sci. U.S.A.
118
,
e2019348118
(
2021
).
32.
K.
Tai
,
A.
Tomita
,
J.
Jewell
, and
A.
Hasegawa
,
Appl. Phys. Lett.
49
,
236
(
1986
).
33.
A.
Alberello
,
E.
Părău
, and
A.
Chabchoub
,
Sci. Rep.
13
,
13654
(
2023
).
34.
T. B.
Benjamin
and
J. E.
Feir
,
J. Fluid Mech.
27
,
417
(
1967
).
35.
A.
Shabat
and
V.
Zakharov
,
Sov. Phys. JETP
34
,
62
(
1972
). See http://www.jetp.ras.ru/cgi-bin/dn/e_034_01_0062.pdf.
36.
N. N.
Akhmediev
and
A.
Ankiewicz
,
Solitons: Nonlinear Pulses and Beams
(
Chapman & Hall
,
1997
).
37.
K. B.
Dysthe
and
K.
Trulsen
,
Phys. Scr.
T82
,
48
(
1999
).
38.
B.
Wetzel
,
M.
Erkintalo
,
G.
Genty
,
K.
Hammani
,
B.
Kibler
,
J.
Fatome
,
C.
Finot
,
F.
Dias
,
N.
Akhmediev
,
G.
Millot
et al.,
SPIE Newsroom
5
,
1
(
2011
).
39.
M.
Onorato
,
A. R.
Osborne
, and
M.
Serio
,
Phys. Rev. Lett.
96
,
014503
(
2006
).
40.
T.
Waseda
,
T.
Kinoshita
, and
H.
Tamura
,
J. Phys. Oceanogr.
39
,
621
(
2009
).
41.
A.
Galchenko
,
A. V.
Babanin
,
D.
Chalikov
,
I.
Young
, and
T.-W.
Hsu
,
J. Phys. Oceanogr.
40
,
2313
(
2010
).
42.
C.
Kharif
and
J.
Touboul
,
Eur. Phys. J. Spec. Top.
185
,
159
(
2010
).
43.
J. N.
Steer
,
A. G.
Borthwick
,
D.
Stagonas
,
E.
Buldakov
, and
T. S.
van den Bremer
,
J. Fluid Mech.
884
,
A40
(
2020
).
44.
J. H.
Li
,
K. S.
Chiang
, and
K. W.
Chow
,
JOSA B
28
,
1693
(
2011
).
45.
S.
Mendes
and
J.
Kasparian
,
Phys. Rev. E
106
,
065101
(
2022
).
47.
D.
Andrade
and
R.
Stuhlmeier
,
J. Fluid Mech.
958
,
A17
(
2023
).
48.
Y.
Li
and
A.
Chabchoub
,
Geophys. Res. Lett.
51
,
e2023GL107381
, https://doi.org/10.1029/2023GL107381 (
2024
).
49.
Y.
He
,
G.
Ducrozet
,
N.
Hoffmann
,
J.
Dudley
, and
A.
Chabchoub
,
Physica D
439
,
133342
(
2022
).
50.
J.
Spinneken
and
C.
Swan
,
Ocean Eng.
36
,
539
(
2009
).
51.
J.
Spinneken
and
C.
Swan
,
Ocean Eng.
36
,
549
(
2009
).
52.
J.
Yang
,
Nonlinear Waves in Integrable and Nonintegrable Systems
(
SIAM
,
2010
).
53.
Y.
He
,
A.
Slunyaev
,
N.
Mori
, and
A.
Chabchoub
,
Phys. Rev. Lett.
129
,
144502
(
2022
).
54.
J.
Wang
,
Q.
Ma
,
S.
Yan
, and
B.
Liang
,
Front. Phys.
9
,
593394
(
2021
).
55.
J.
Wang
and
Q. W.
Ma
,
Procedia Eng.
126
,
597
(
2015
).
56.
J.
Wang
, arXiv:2310.19840 (2023).
57.
D.
Clamond
,
D.
Fructus
,
J.
Grue
, and
Ø.
Kristiansen
,
J. Comput. Phys.
205
,
686
(
2005
).
58.
L.
Shemer
and
L.
Alperovich
,
Phys. Fluids
25
,
051701
(
2013
).
59.
A.
Slunyaev
,
E.
Pelinovsky
,
A.
Sergeeva
,
A.
Chabchoub
,
N.
Hoffmann
,
M.
Onorato
, and
N.
Akhmediev
,
Phys. Rev. E
88
,
012909
(
2013
).
60.
A.
Chabchoub
,
T.
Waseda
,
M.
Klein
,
S.
Trillo
, and
M.
Onorato
,
Phys. Rev. Fluids
5
,
114801
(
2020
).
61.
Y.
He
,
A.
Witt
,
S.
Trillo
,
A.
Chabchoub
, and
N.
Hoffmann
,
Phys. Rev. E
106
,
L043101
(
2022
).
62.
S.
Trillo
,
G.
Deng
,
G.
Biondini
,
M.
Klein
,
G.
Clauss
,
A.
Chabchoub
, and
M.
Onorato
,
Phys. Rev. Lett.
117
,
144102
(
2016
).
63.
O.
Kimmoun
,
H.
Hsu
,
B.
Kibler
, and
A.
Chabchoub
,
Phys. Rev. E
96
,
022219
(
2017
).
64.
D.
Eeltink
,
A.
Armaroli
,
C.
Luneau
,
H.
Branger
,
M.
Brunetti
, and
J.
Kasparian
,
Nonlinear Dyn.
102
,
2385
(
2020
).
65.
A.
Gomel
,
C.
Montessuit
,
A.
Armaroli
,
D.
Eeltink
,
A.
Chabchoub
,
J.
Kasparian
, and
M.
Brunetti
,
Phys. Fluids
35
,
087128
(
2023
).
66.
B.
Frisquet
,
B.
Kibler
, and
G.
Millot
,
Phys. Rev. X
3
,
041032
(
2013
).
You do not currently have access to this content.