The spread of misinformation on social media is inextricably related to each user’s forwarding habits. In this paper, given that users have heterogeneous forwarding probabilities to their neighbors with varied relationships when they receive misinformation, we present a novel ignorant-spreader-refractory (ISR) spreading model with heterogeneous spreading rates on activity-driven networks with various types of links that encode these differential relationships. More exactly, in this model, the same type of links has an identical spreading rate, while different types of links have distinct ones. Using a mean-field approach and Monte Carlo simulations, we investigate how the heterogeneity of spreading rates affects the outbreak threshold and final prevalence of misinformation. It is demonstrated that the heterogeneity of spreading rates has no effect on the threshold when the type of link follows a uniform distribution. However, it has a significant impact on the threshold for non-uniform distributions. For example, the heterogeneity of spreading rates increases the threshold for normal distribution while it lowers the threshold for an exponent distribution. In comparison to the situation of a homogeneous spreading rate, whether the heterogeneity of spreading rates improves or decreases the final prevalence of misinformation is also determined by the distributions of the type of links.

1.
L.
Wu
,
F.
Morstatter
,
K. M.
Carley
, and
H.
Liu
, “
Misinformation in social media: Definition, manipulation, and detection
,”
ACM SIGKDD Explorations Newsletter
21
,
80
90
(
2019
).
2.
M.
Del Vicario
,
A.
Bessi
,
F.
Zollo
,
F.
Petroni
,
A.
Scala
,
G.
Caldarelli
,
H. E.
Stanley
, and
W.
Quattrociocchi
, “
The spreading of misinformation online
,”
Proc. Natl. Acad. Sci. U.S.A.
113
,
554
559
(
2016
).
3.
R.
Valecha
,
T.
Volety
,
H. R.
Rao
, and
K. H.
Kwon
, “
Misinformation sharing on Twitter during Zika: An investigation of the effect of threat and distance
,”
IEEE Internet Comput.
25
,
31
39
(
2020
).
4.
S.
Muhammed T
and
S. K.
Mathew
, “
The disaster of misinformation: A review of research in social media
,”
Int. J. Data Sci. Analytics
13
,
271
285
(
2022
).
5.
U. K.
Ecker
,
S.
Lewandowsky
,
J.
Cook
,
P.
Schmid
,
L. K.
Fazio
,
N.
Brashier
,
P.
Kendeou
,
E. K.
Vraga
, and
M. A.
Amazeen
, “
The psychological drivers of misinformation belief and its resistance to correction
,”
Nat. Rev. Psychol.
1
,
13
29
(
2022
).
6.
Y. O.
Okoro
,
O.
Ayo-Farai
,
C. P.
Maduka
,
C. C.
Okongwu
, and
O. T.
Sodamade
, “
A review of health misinformation on digital platforms: Challenges and countermeasures
,”
Int. J. Appl. Res. Soc. Sci.
6
,
23
36
(
2024
).
7.
M.
Nekovee
,
Y.
Moreno
,
G.
Bianconi
, and
M.
Marsili
, “
Theory of rumour spreading in complex social networks
,”
Phys. A
374
,
457
470
(
2007
).
8.
L.
Huo
and
Y.
Zhang
, “
Effect of global and local refutation mechanism on rumor propagation in heterogeneous network
,”
Mathematics
10
,
586
(
2022
).
9.
Z.
Ruan
,
B.
Yu
,
X.
Shu
,
Q.
Zhang
, and
Q.
Xuan
, “
The impact of malicious nodes on the spreading of false information
,”
Chaos
30
,
083101
(
2020
).
10.
M.
Tambuscio
,
D. F.
Oliveira
,
G. L.
Ciampaglia
, and
G.
Ruffo
, “
Network segregation in a model of misinformation and fact-checking
,”
J. Comput. Soc. Sci.
1
,
261
275
(
2018
).
11.
W.
Wang
,
Y.
Ma
,
T.
Wu
,
Y.
Dai
,
X.
Chen
, and
L. A.
Braunstein
, “
Containing misinformation spreading in temporal social networks
,”
Chaos
29
,
123131
(
2019
).
12.
S.
Chen
,
L.
Xiao
, and
A.
Kumar
, “
Spread of misinformation on social media: What contributes to it and how to combat it
,”
Comput. Hum. Behav.
141
,
107643
(
2023
).
13.
M.
Granovetter
, “
Threshold models of collective behavior
,”
Am. J. Sociol.
83
,
1420
1443
(
1978
).
14.
J.
Goldenberg
,
B.
Libai
, and
E.
Muller
, “
Talk of the network: A complex systems look at the underlying process of word-of-mouth
,”
Market. Lett.
12
,
211
223
(
2001
).
15.
M.
Boguñá
and
R.
Pastor-Satorras
, “
Epidemic spreading in correlated complex networks
,”
Phys. Rev. E
66
,
047104
(
2002
).
16.
Y.
Moreno
,
R.
Pastor-Satorras
, and
A.
Vespignani
, “
Epidemic outbreaks in complex heterogeneous networks
,”
Eur. Phys. J. B
26
,
521
529
(
2002
).
17.
Z.
Zhang
,
J.
Jing
,
F.
Li
, and
C.
Zhao
, “
Survey on fake information detection, propagation and control in online social networks from the perspective of artificial intelligence
,”
Chin. J. Comput.
44
,
2261
2282
(
2021
).
18.
Y.
Moreno
,
M.
Nekovee
, and
A. F.
Pacheco
, “
Dynamics of rumor spreading in complex networks
,”
Phys. Rev. E
69
,
066130
(
2004
).
19.
R.
Zhang
and
D.
Li
, “
Rumor propagation on networks with community structure
,”
Phys. A
483
,
375
385
(
2017
).
20.
Z.
Ruan
,
B.
Yu
,
X.
Zhang
, and
Q.
Xuan
, “
Role of lurkers in threshold-driven information spreading dynamics
,”
Phys. Rev. E
104
,
034308
(
2021
).
21.
J.
Xian
,
D.
Yang
,
L.
Pan
,
W.
Wang
, and
Z.
Wang
, “
Misinformation spreading on correlated multiplex networks
,”
Chaos
29
,
113123
(
2019
).
22.
L.
Zhao
,
X.
Qiu
,
X.
Wang
, and
J.
Wang
, “
Rumor spreading model considering forgetting and remembering mechanisms in inhomogeneous networks
,”
Phys. A
392
,
987
994
(
2013
).
23.
B.
Wang
,
G.
Chen
,
L.
Fu
,
L.
Song
, and
X.
Wang
, “
Drimux: Dynamic rumor influence minimization with user experience in social networks
,”
IEEE Trans. Knowl. Data Eng.
29
,
2168
2181
(
2017
).
24.
A.
Khodabandeh Yalabadi
,
M.
Yazdani-Jahromi
,
S.
Abdidizaji
,
I.
Garibay
, and
O.
Ozmen Garibay
, “Controlling the misinformation diffusion in social media by the effect of different classes of agents,” arXiv–2401 (2024).
25.
Y.
Zhang
,
F.
Meng
,
V.
Nicolò
, and
C. J.
Tessone
, “A theoretical model of false information control,” arXiv arXiv:2402.03350 (2024).
26.
A.
Zareie
and
R.
Sakellariou
, “
Minimizing the spread of misinformation in online social networks: A survey
,”
J. Netw. Comput. Appl.
186
,
103094
(
2021
).
27.
P.
Holme
and
J.
Saramäki
, “
Temporal networks
,”
Phys. Rep.
519
,
97
125
(
2012
).
28.
N.
Perra
,
B.
Gonçalves
,
R.
Pastor-Satorras
, and
A.
Vespignani
, “
Activity driven modeling of time varying networks
,”
Sci. Rep.
2
,
469
(
2012
).
29.
N.
Gozzi
,
M.
Scudeler
,
D.
Paolotti
,
A.
Baronchelli
, and
N.
Perra
, “
Self-initiated behavioral change and disease resurgence on activity-driven networks
,”
Phys. Rev. E
104
,
014307
(
2021
).
30.
Y.
Hou
,
Y.
Lu
,
Y.
Dong
,
L.
Jin
, and
L.
Shi
, “
Impact of different social attitudes on epidemic spreading in activity-driven networks
,”
Appl. Math. Comput.
446
,
127850
(
2023
).
31.
L.
Zeng
,
M.
Tang
, and
Y.
Liu
, “
The impacts of the individual activity and attractiveness correlation on spreading dynamics in time-varying networks
,”
Commun. Nonlinear Sci. Numer. Simul.
122
,
107233
(
2023
).
32.
H.
Zhu
,
J.
Ma
, and
S.
Li
, “
Effects of online and offline interaction on rumor propagation in activity-driven networks
,”
Phys. A
525
,
1124
1135
(
2019
).
33.
X.
An
,
L.
Ding
, and
P.
Hu
, “
Information propagation with individual attention-decay effect on activity-driven networks
,”
Phys. A
556
,
124815
(
2020
).
34.
L.
Zhong
,
X.
Xue
,
Y.
Bai
,
J.
Huang
,
Q.
Chen
,
L.
Huang
, and
J.
Pan
Information spreading on activity-driven temporal networks with two-step memory
,”
Discrete. Dyn. Nat. Soc.
2021
,
4506012
(
2021
).
35.
Y.
Xu
,
R.
Mei
,
Y.
Yang
, and
Z.
Kong
, “
Modeling and analysis of rumor spreading with social reinforcement mechanism
,”
Adv. Math. Phys.
2019
,
7241021
(
2019
).
36.
S.
Yang
,
J.
Wang
,
B.
Dai
,
X.
Li
,
Y.
Jiang
, and
Y.
Liu
, “
State of the art in social network user behaviors and its future
,”
Bull. Chin. Acad. Sci.
30
,
200
215
(
2015
).
37.
L.
Gyarmati
and
T. A.
Trinh
, “
Measuring user behavior in online social networks
,”
IEEE Netw.
24
,
26
31
(
2010
).
38.
X.-P.
Han
,
T.
Zhou
, and
B.-H.
Wang
, “
Modeling human dynamics with adaptive interest
,”
New J. Phys.
10
,
073010
(
2008
).
39.
C.-Y.
Xia
,
Z.
Wang
,
J.
Sanz
,
S.
Meloni
, and
Y.
Moreno
, “
Effects of delayed recovery and nonuniform transmission on the spreading of diseases in complex networks
,”
Phys. A
392
,
1577
1585
(
2013
).
40.
Y.-W.
Gong
,
Y.-R.
Song
, and
G.-P.
Jiang
, “
Epidemic spreading in metapopulation networks with heterogeneous infection rates
,”
Phys. A
416
,
208
218
(
2014
).
41.
Y.
Gong
and
M.
Small
, “
Modelling the effect of heterogeneous vaccination on metapopulation epidemic dynamics
,”
Phys. Lett. A
383
,
125996
(
2019
).
42.
P.
Crépey
,
F. P.
Alvarez
, and
M.
Barthélemy
, “
Epidemic variability in complex networks
,”
Phys. Rev. E
73
,
046131
(
2006
).
43.
P.
Shu
,
W.
Wang
,
M.
Tang
,
P.
Zhao
, and
Y.-C.
Zhang
, “
Recovery rate affects the effective epidemic threshold with synchronous updating
,”
Chaos
26
,
063108
(
2016
).
44.
J.
Li
and
X.
Chang
, “
Combating misinformation by sharing the truth: A study on the spread of fact-checks on social media
,”
Inform. Syst. Front.
25
,
1479
1493
(
2023
).
45.
S.
Lewandowsky
and
S.
Van Der Linden
, “
Countering misinformation and fake news through inoculation and prebunking
,”
Eur. Rev. Soc. Psychol.
32
,
348
384
(
2021
).
You do not currently have access to this content.