When an electron in a semiconductor gets excited to the conduction band, the missing electron can be viewed as a positively charged particle, the hole. Due to the Coulomb interaction, electrons and holes can form a hydrogen-like bound state called the exciton. For cuprous oxide, a Rydberg series up to high principle quantum numbers has been observed by Kazimierczuk et al. [Nature 514, 343 (2014)] with the extension of excitons up to the μm-range. In this region, the correspondence principle should hold and quantum mechanics turn into classical dynamics. Due to the complex valence band structure of Cu 2O, classical dynamics deviates from a purely hydrogen-like behavior. The uppermost valence band in cuprous oxide splits into various bands resulting in yellow and green exciton series. Since the system exhibits no spherical symmetry, the angular momentum is not conserved. Thus, the classical dynamics becomes non-integrable, resulting in the possibility of chaotic motion. Here, we investigate the classical dynamics of the yellow and green exciton series in cuprous oxide for two-dimensional orbits in the symmetry planes as well as fully three-dimensional orbits. Our analysis reveals substantial differences between the dynamics of the yellow and green exciton series. While it is mostly regular for the yellow series, large regions in phase space with classical chaos do exist for the green exciton series.

1.
J.
Barrow-Green
,
Poincaré and the Three Body Problem
(
American Mathematical Soc
,
1997
). Vol.
11
.
2.
N. C.
Stone
and
N. W.
Leigh
, “
A statistical solution to the chaotic, non-hierarchical three-body problem
,”
Nature
576
,
406
410
(
2019
).
3.
P. G.
Breen
,
C. N.
Foley
,
T.
Boekholt
, and
S. P.
Zwart
, “
Newton versus the machine: Solving the chaotic three-body problem using deep neural networks
,”
Mon. Not. R. Astron. Soc.
494
,
2465
2470
(
2020
).
4.
S.
Liao
,
X.
Li
, and
Y.
Yang
, “
Three-body problem—from Newton to supercomputer plus machine learning
,”
New Astron.
96
,
101850
(
2022
).
5.
H.
Friedrich
and
H.
Wintgen
, “
The hydrogen atom in a uniform magnetic field—an example of chaos
,”
Phys. Rep.
183
,
37
79
(
1989
).
6.
H.
Hasegawa
,
M.
Robnik
, and
G.
Wunner
, “
Classical and quantal chaos in the diamagnetic Kepler problem
,”
Prog. Theor. Phys. Suppl.
98
,
198
286
(
1989
).
7.
T.
Kazimierczuk
,
D.
Fröhlich
,
S.
Scheel
,
H.
Stolz
, and
M.
Bayer
, “
Giant Rydberg excitons in the copper oxide Cu 2O
,”
Nature
514
,
343
347
(
2014
).
8.
M. A.
Versteegh
,
S.
Steinhauer
,
J.
Bajo
,
T.
Lettner
,
A.
Soro
,
A.
Romanova
,
S.
Gyger
,
L.
Schweickert
,
A.
Mysyrowicz
, and
V.
Zwiller
, “
Giant Rydberg excitons in Cu 2O probed by photoluminescence excitation spectroscopy
,”
Phys. Rev. B
104
,
245206
(
2021
).
9.
F.
Schöne
,
S.-O.
Krüger
,
P.
Grünwald
,
H.
Stolz
,
S.
Scheel
,
M.
Aßmann
,
J.
Heckötter
,
J.
Thewes
,
D.
Fröhlich
, and
M.
Bayer
, “
Deviations of the exciton level spectrum in Cu 2 O from the hydrogen series
,”
Phys. Rev. B
93
,
075203
(
2016
).
10.
F.
Schöne
,
S.-O.
Krüger
,
P.
Grünwald
,
M.
Aßmann
,
J.
Heckötter
,
J.
Thewes
,
H.
Stolz
,
D.
Fröhlich
,
M.
Bayer
, and
S.
Scheel
, “
Coupled valence band dispersions and the quantum defect of excitons in Cu 2O
,”
J. Phys. B: At., Mol. Opt. Phys.
49
,
134003
(
2016
).
11.
J.
Thewes
,
J.
Heckötter
,
T.
Kazimierczuk
,
M.
Aßmann
,
D.
Fröhlich
,
M.
Bayer
,
M. A.
Semina
, and
M. M.
Glazov
, “
Observation of high angular momentum excitons in cuprous oxide
,”
Phys. Rev. Lett.
115
,
027402
(
2015
).
12.
F.
Schweiner
,
J.
Main
,
M.
Feldmaier
,
G.
Wunner
, and
C.
Uihlein
, “
Impact of the valence band structure of Cu 2 O on excitonic spectra
,”
Phys. Rev. B
93
,
195203
(
2016
).
13.
J. M.
Luttinger
and
W.
Kohn
, “
Motion of electrons and holes in perturbed periodic fields
,”
Phys. Rev.
97
,
869
883
(
1955
).
14.
J. M.
Luttinger
, “
Quantum theory of cyclotron resonance in semiconductors: General theory
,”
Phys. Rev.
102
,
1030
1041
(
1956
).
15.
K.
Suzuki
and
J. C.
Hensel
, “
Quantum resonances in the valence bands of germanium. I. Theoretical considerations
,”
Phys. Rev. B
9
,
4184
4218
(
1974
).
16.
P.
Rommel
,
P.
Zielinski
, and
J.
Main
, “
Green exciton series in cuprous oxide
,”
Phys. Rev. B
101
,
075208
(
2020
).
17.
J. B.
Grun
,
M.
Sieskind
, and
S.
Nikitine
, “
Détermination de l’intensité d’oscillateur des raies de la série verte de Cu 2 O aux basses températures
,”
J. Phys. Radium
22
,
176
178
(
1961
).
18.
F.
Schweiner
,
J.
Main
, and
G.
Wunner
, “
Magnetoexcitons break antiunitary symmetries
,”
Phys. Rev. Lett.
118
,
046401
(
2017
).
19.
F.
Schweiner
,
J.
Main
, and
G.
Wunner
, “
GOE-GUE-Poisson transitions in the nearest-neighbor spacing distribution of magnetoexcitons
,”
Phys. Rev. E
95
,
062205
(
2017
).
20.
F.
Schweiner
,
J.
Laturner
,
J.
Main
, and
G.
Wunner
, “
Crossover between the Gaussian orthogonal ensemble, the Gaussian unitary ensemble, and Poissonian statistics
,”
Phys. Rev. E
96
,
052217
(
2017
).
21.
J.
Ertl
,
P.
Rommel
,
M.
Mom
,
J.
Main
, and
M.
Bayer
, “
Classical and semiclassical description of Rydberg excitons in cuprous oxide
,”
Phys. Rev. B
101
,
241201(R)
(
2020
).
22.
J.
Ertl
,
M.
Marquardt
,
M.
Schumacher
,
P.
Rommel
,
J.
Main
, and
M.
Bayer
, “
Signatures of exciton orbits in quantum mechanical recurrence spectra of Cu 2 O
,”
Phys. Rev. Lett.
129
,
067401
(
2022
).
23.
J.
Ertl
,
M.
Marquardt
,
M.
Schumacher
,
P.
Rommel
,
J.
Main
, and
M.
Bayer
, “
Classical dynamics and semiclassical analysis of excitons in cuprous oxide
,”
Phys. Rev. B
109
,
165203
(
2024
).
24.
A. J.
Lichtenberg
and
M. A.
Lieberman
,
Regular and Chaotic Dynamics
(
Springer Science & Business Media
,
2013
). Vol.
38
.
25.
C.
Mendoza
and
A. M.
Mancho
, “
Hidden geometry of ocean flows
,”
Phys. Rev. Lett.
105
,
038501
(
2010
).
26.
A. M.
Mancho
,
S.
Wiggins
,
J.
Curbelo
, and
C.
Mendoza
, “
Lagrangian descriptors: A method for revealing phase space structures of general time dependent dynamical systems
,”
Commun. Nonlinear Sci. Numer. Simul.
18
,
3530
3557
(
2013
).
27.
J.
Daquin
,
R.
Pédenon-Orlanducci
,
M.
Agaoglou
,
G.
García-Sánchez
, and
A. M.
Mancho
, “
Global dynamics visualisation from Lagrangian descriptors. Applications to discrete and continuous systems
,”
Physica D
442
,
133520
(
2022
).
28.
G.
Koster
,
J.
Dimmock
,
R.
Wheeler
, and
H.
Statz
, Properties of the Thirty-Two Point Groups, Massachusetts Institute of Technology Press research monograph (M.I.T. Press, Cambridge, 1963).
29.
J.
Robertson
, “
Electronic structure and x-ray near-edge core spectra of Cu 2O
,”
Phys. Rev. B
28
,
3378
(
1983
).
30.
J. W.
Hodby
,
T. E.
Jenkins
,
C.
Schwab
,
H.
Tamura
, and
D.
Trivich
, “
Cyclotron resonance of electrons and of holes in cuprous oxide, Cu 2 O
,”
J. Phys. C: Solid State. Phys.
9
,
1429
(
1976
).
31.
O.
Madelung
,
U.
Rössler
, and
M.
Schulz
,
Landolt-Börnstein—Group III Condensed Matter
(
Springer-Verlag
,
Heidelberg
,
1998
).
32.
H. G.
Schuster
and
W.
Just
,
Deterministic Chaos: An Introduction
(
John Wiley & Sons
,
2005
).
33.
R.
Brankin
,
I.
Gladwell
, and
L.
Shampine
, “RKSUITE: A suite of explicit Runge-Kutta codes,” in Contributions in Numerical Mathematics (World Scientific, 1993), pp. 41–53.
34.
F.
Haake
,
S.
Gnutzmann
, and
M.
Kuś
, Quantum Signatures of Chaos, Fourth Edition, Springer Series in Synergetics (Springer, Cham, 2018).
35.
J. C.
Tully
, “
Molecular dynamics with electronic transitions
,”
J. Chem. Phys.
93
,
1061
1071
(
1990
).
You do not currently have access to this content.